中国电机工程学报
中國電機工程學報
중국전궤공정학보
ZHONGGUO DIANJI GONGCHENG XUEBAO
2013年
35期
36-43
,共8页
周强%段钰锋%洪亚光%朱纯%佘敏%韦红旗
週彊%段鈺鋒%洪亞光%硃純%佘敏%韋紅旂
주강%단옥봉%홍아광%주순%사민%위홍기
模拟烟气%活性炭%喷射脱汞%影响因素%吸附机制
模擬煙氣%活性炭%噴射脫汞%影響因素%吸附機製
모의연기%활성탄%분사탈홍%영향인소%흡부궤제
simulated flue gas%activated carbon%injection demercuration%effect factors%adsorption mechanism
在模拟烟气管道内对一种商业活性炭进行喷射脱汞实验,研究活性炭粒径、烟气温度、烟气汞浓度、停留时间及活性炭喷射量对烟气中汞脱除的影响。建立了活性炭烟气喷射脱汞过程的数学模型,对上述汞吸附过程进行理论分析和讨论。结果表明减小活性炭粒径或增大烟气汞浓度,可增大烟气中汞向活性炭表面传递的膜传质速率及活性炭表面的汞向活性炭内部传递的内扩散速率,提高了喷射脱汞效率。增加活性炭在烟道中的停留时间,可增加汞向活性炭内部的扩散吸附机会。喷射条件下停留时间远远低于吸附平衡的时间,活性位吸附成为汞吸附过程的主要控制步。烟气温度升高,物理吸附作用降低,脱汞性能下降;增加活性炭喷射量可增加脱汞率,但活性炭的单位汞吸附量有所降低。
在模擬煙氣管道內對一種商業活性炭進行噴射脫汞實驗,研究活性炭粒徑、煙氣溫度、煙氣汞濃度、停留時間及活性炭噴射量對煙氣中汞脫除的影響。建立瞭活性炭煙氣噴射脫汞過程的數學模型,對上述汞吸附過程進行理論分析和討論。結果錶明減小活性炭粒徑或增大煙氣汞濃度,可增大煙氣中汞嚮活性炭錶麵傳遞的膜傳質速率及活性炭錶麵的汞嚮活性炭內部傳遞的內擴散速率,提高瞭噴射脫汞效率。增加活性炭在煙道中的停留時間,可增加汞嚮活性炭內部的擴散吸附機會。噴射條件下停留時間遠遠低于吸附平衡的時間,活性位吸附成為汞吸附過程的主要控製步。煙氣溫度升高,物理吸附作用降低,脫汞性能下降;增加活性炭噴射量可增加脫汞率,但活性炭的單位汞吸附量有所降低。
재모의연기관도내대일충상업활성탄진행분사탈홍실험,연구활성탄립경、연기온도、연기홍농도、정류시간급활성탄분사량대연기중홍탈제적영향。건립료활성탄연기분사탈홍과정적수학모형,대상술홍흡부과정진행이론분석화토론。결과표명감소활성탄립경혹증대연기홍농도,가증대연기중홍향활성탄표면전체적막전질속솔급활성탄표면적홍향활성탄내부전체적내확산속솔,제고료분사탈홍효솔。증가활성탄재연도중적정류시간,가증가홍향활성탄내부적확산흡부궤회。분사조건하정류시간원원저우흡부평형적시간,활성위흡부성위홍흡부과정적주요공제보。연기온도승고,물리흡부작용강저,탈홍성능하강;증가활성탄분사량가증가탈홍솔,단활성탄적단위홍흡부량유소강저。
An experimental study on mercury capture was carried out using a commercial activated carbon injection into a duct of simulated flue gas. Influences of particle size, temperature, mercury concentration, residence time, and activated carbon load amount on mercury removal efficiency were investigated. A mathematical model describing mercury adsorption by activated carbon injection was established, which interprets chemical dynamic mechanism of mercury adsorption. The results show that reducing the particle size or increasing the mercury concentration can both speed up film mass transfer rate of mercury from gas to surface of the activated carbon and rise intraparticle diffusion rate of mercury from surface to internal pores,which then improves mercury removal rate. Longer residence time is beneficial to the mercury deposition on the inner pores. Owing to far less residence time to the adsorption equilibrium, the mercury adsorption on active sites is recognized as the control step. Higher temperature reduces physisorption ability leading to decrease in mercury removal ability. Increase of loading amount of activated carbon results in higher mercury removal, but reduces the mercury accumulative adsorption per unit quality of sorbent.