农业工程学报
農業工程學報
농업공정학보
2014年
1期
63-72
,共10页
曹连海%吴普特%赵西宁%王玉宝
曹連海%吳普特%趙西寧%王玉寶
조련해%오보특%조서저%왕옥보
灌溉%污染%粮食%河套灌区%灰水足迹%盐渍化
灌溉%汙染%糧食%河套灌區%灰水足跡%鹽漬化
관개%오염%양식%하투관구%회수족적%염지화
irrigation%pollution%grain%hetao irrigation district%grey water footprint%salinization
随着面源污染和土壤盐渍化成为重要的环境污染源和粮食安全的制约要素,如何评价和量化农业生产的负面效应,成为亟需解决的问题。水足迹理论的出现使该负面效应的量化成为可能,水足迹包括蓝水、绿水和灰水足迹,灰水足迹可以表征不同类型负面效应的大小,粮食生产灰水足迹反映了单位粮食产量的负面效应。该文应用水足迹理论,以内蒙古河套灌区为研究区,给出粮食生产灰水足迹的计算方法,选取环境最大允许浓度Cmax和本底浓度 Cnat,逐项计算各项灰水足迹,并根据短板原理得出总灰水足迹,计算分析河套灌区粮食生产灰水足迹。结果表明:2005-2008年面源污染的灰水足迹为0.55~0.58亿m3;积盐的灰水足迹从2005年的4.570亿m3减少到2008年的1.825亿m3。总灰水足迹从2006年的5.872亿m3,减少到2008年的1.825亿m3,总灰水足迹在总水足迹中比例小于10%,有逐年降低的趋势。2005-2008年粮食生产灰水足迹分别为0.129、0.159、0.062和0.043 m3/kg,粮食生产灰水足迹有逐年降低的趋势,2008年的粮食生产灰水足迹仅相当于2006年的27.04%。节水灌溉等新技术的推广是其主要原因,节水灌溉可以减少无效灌溉水量和水分的无效蒸发量,从而减小粮食生产灰水足迹。在此基础上,给出减少粮食生产灰水足迹的措施,即节水灌溉、种植业结构调整、合理确定地下水位和合理使用化肥、农药。研究成果较好地量化了大型灌区粮食生产的负面效应和粮食生产灰水足迹,可为其他粮食主产区农业可持续发展及制定农业产业政策提供参考。
隨著麵源汙染和土壤鹽漬化成為重要的環境汙染源和糧食安全的製約要素,如何評價和量化農業生產的負麵效應,成為亟需解決的問題。水足跡理論的齣現使該負麵效應的量化成為可能,水足跡包括藍水、綠水和灰水足跡,灰水足跡可以錶徵不同類型負麵效應的大小,糧食生產灰水足跡反映瞭單位糧食產量的負麵效應。該文應用水足跡理論,以內矇古河套灌區為研究區,給齣糧食生產灰水足跡的計算方法,選取環境最大允許濃度Cmax和本底濃度 Cnat,逐項計算各項灰水足跡,併根據短闆原理得齣總灰水足跡,計算分析河套灌區糧食生產灰水足跡。結果錶明:2005-2008年麵源汙染的灰水足跡為0.55~0.58億m3;積鹽的灰水足跡從2005年的4.570億m3減少到2008年的1.825億m3。總灰水足跡從2006年的5.872億m3,減少到2008年的1.825億m3,總灰水足跡在總水足跡中比例小于10%,有逐年降低的趨勢。2005-2008年糧食生產灰水足跡分彆為0.129、0.159、0.062和0.043 m3/kg,糧食生產灰水足跡有逐年降低的趨勢,2008年的糧食生產灰水足跡僅相噹于2006年的27.04%。節水灌溉等新技術的推廣是其主要原因,節水灌溉可以減少無效灌溉水量和水分的無效蒸髮量,從而減小糧食生產灰水足跡。在此基礎上,給齣減少糧食生產灰水足跡的措施,即節水灌溉、種植業結構調整、閤理確定地下水位和閤理使用化肥、農藥。研究成果較好地量化瞭大型灌區糧食生產的負麵效應和糧食生產灰水足跡,可為其他糧食主產區農業可持續髮展及製定農業產業政策提供參攷。
수착면원오염화토양염지화성위중요적배경오염원화양식안전적제약요소,여하평개화양화농업생산적부면효응,성위극수해결적문제。수족적이론적출현사해부면효응적양화성위가능,수족적포괄람수、록수화회수족적,회수족적가이표정불동류형부면효응적대소,양식생산회수족적반영료단위양식산량적부면효응。해문응용수족적이론,이내몽고하투관구위연구구,급출양식생산회수족적적계산방법,선취배경최대윤허농도Cmax화본저농도 Cnat,축항계산각항회수족적,병근거단판원리득출총회수족적,계산분석하투관구양식생산회수족적。결과표명:2005-2008년면원오염적회수족적위0.55~0.58억m3;적염적회수족적종2005년적4.570억m3감소도2008년적1.825억m3。총회수족적종2006년적5.872억m3,감소도2008년적1.825억m3,총회수족적재총수족적중비례소우10%,유축년강저적추세。2005-2008년양식생산회수족적분별위0.129、0.159、0.062화0.043 m3/kg,양식생산회수족적유축년강저적추세,2008년적양식생산회수족적부상당우2006년적27.04%。절수관개등신기술적추엄시기주요원인,절수관개가이감소무효관개수량화수분적무효증발량,종이감소양식생산회수족적。재차기출상,급출감소양식생산회수족적적조시,즉절수관개、충식업결구조정、합리학정지하수위화합리사용화비、농약。연구성과교호지양화료대형관구양식생산적부면효응화양식생산회수족적,가위기타양식주산구농업가지속발전급제정농업산업정책제공삼고。
As non-point source pollution and salinization being the important environmental pollution source that affects food security, the evaluation and quantification of such negative effects on agricultural production become the urgent eco-environment issues need to be solved. It is possible to quantify the negative effects of agricultural production because of the foundation of Water Footprint Theory. Water footprint contains blue water footprint, green water footprint and grey water footprint. Grey water footprint(GWF) can represents the value of different types of negative effects, of which the GWF of grain production represents the negative effect of per unit grain production. In the study, water footprint theory is used and Hetao irrigation district in Inner Mongolia was employed as the study area. The calculation method of the grain production GWF were given and the parameters of maximum environmental allowable concentration(Cmax) and background concentration(Cnat) were selected. Each kind of GWF was calculated Item by item, and the total GWF was computed using the Cask Theory, so the GWF of grain production was calculated and analyzed. The results showed that the GWF of non-point source pollution was 0.55-0.58×108m3 during the period of 2005-2008. The GWF of salification was 4.570×108m3 in 2005 and decreased to 1.825×108m3 in 2008. The total GWF was declined from 5.872×108m3 in 2006 to 1.825×108m3 in 2008. In year of 2005-2008, the total GWF was less than 10% of total water footprint, and showed a slightly decline tend along the years. The GWF of grain production from year of 2005 to 2008 was 0.129 m3/kg, 0.159 m3/kg, 0.062 m3/kg and 0.043 m3/kg, respectively. In general, the GWF of grain production showed declining tend, which in 2008 was only equivalent to 27.04% of that in 2006. The extension of new agricultural technologies such as water-saving irrigation was the main reason, water-saving irrigation significantly reduce GWF of grain production by decreasing ineffective irrigation and invalid moisture evaporation. Based on these, the measures, including water saving, cropping structure adjustment, reasonably determination of ground water level and reasonable utilization of fertilizers and pesticides, are recommended for reducing the GWF of grain production. The negative effects of environmental issues on food production and GWF of grain production in large-scale irrigation area are quantified preferably. The results can offer a valuable reference for the agricultural sustainable development and formulating agricultural industry policy for other similar grain-producing regions.