光谱学与光谱分析
光譜學與光譜分析
광보학여광보분석
SPECTROSCOPY AND SPECTRAL ANALYSIS
2014年
6期
1533-1537
,共5页
柳培忠%张丽萍%李卫军%覃鸿%董肖莉
柳培忠%張麗萍%李衛軍%覃鴻%董肖莉
류배충%장려평%리위군%담홍%동초리
玉米%近红外光谱%品种鉴别%DS算法%光谱校正
玉米%近紅外光譜%品種鑒彆%DS算法%光譜校正
옥미%근홍외광보%품충감별%DS산법%광보교정
Corn%Near-infrared spectra%Variety discrimination%Direct standardization algorithm%Spectral calibration
从校正的角度出发,研究了近红外定性分析中模型稳定性问题。以13个玉米品种为研究对象,针对数据采集时间不同带来的模型失效问题,借鉴近红外光谱定量分析中两台仪器间模型传递的思想,将直接模型传递(Direct Standardization)算法用于校正同一仪器不同时间采集的光谱,使得一次建立的品种鉴别模型,能用于其余时间测试数据的鉴别。首先采用Kennard/Stone算法在主光谱集中选取校正样品集,按照对应的编号从从光谱集中取出对应的数据,然后对校正样品集采用DS算法求取两组数据间的变换关系,再对剩余的从光谱集进行相应的变换得到适用于模型的光谱。实验中对比了校正样本数和模型校正位置对校正结果的影响,分别从品种定性鉴别准确性和校正前后主光谱数据和从光谱数据分布距离两方面分析了实验结果。结果表明,该方法能有效地解决同一仪器随着采样时间推移产生的光谱偏移现象,对采样时间不同的测试集均得到较高的识别率,提高了模型的鲁棒性和适用范围,由实验结果可见,校正位置处于特征提取之后时,校正效果最佳。
從校正的角度齣髮,研究瞭近紅外定性分析中模型穩定性問題。以13箇玉米品種為研究對象,針對數據採集時間不同帶來的模型失效問題,藉鑒近紅外光譜定量分析中兩檯儀器間模型傳遞的思想,將直接模型傳遞(Direct Standardization)算法用于校正同一儀器不同時間採集的光譜,使得一次建立的品種鑒彆模型,能用于其餘時間測試數據的鑒彆。首先採用Kennard/Stone算法在主光譜集中選取校正樣品集,按照對應的編號從從光譜集中取齣對應的數據,然後對校正樣品集採用DS算法求取兩組數據間的變換關繫,再對剩餘的從光譜集進行相應的變換得到適用于模型的光譜。實驗中對比瞭校正樣本數和模型校正位置對校正結果的影響,分彆從品種定性鑒彆準確性和校正前後主光譜數據和從光譜數據分佈距離兩方麵分析瞭實驗結果。結果錶明,該方法能有效地解決同一儀器隨著採樣時間推移產生的光譜偏移現象,對採樣時間不同的測試集均得到較高的識彆率,提高瞭模型的魯棒性和適用範圍,由實驗結果可見,校正位置處于特徵提取之後時,校正效果最佳。
종교정적각도출발,연구료근홍외정성분석중모형은정성문제。이13개옥미품충위연구대상,침대수거채집시간불동대래적모형실효문제,차감근홍외광보정량분석중량태의기간모형전체적사상,장직접모형전체(Direct Standardization)산법용우교정동일의기불동시간채집적광보,사득일차건립적품충감별모형,능용우기여시간측시수거적감별。수선채용Kennard/Stone산법재주광보집중선취교정양품집,안조대응적편호종종광보집중취출대응적수거,연후대교정양품집채용DS산법구취량조수거간적변환관계,재대잉여적종광보집진행상응적변환득도괄용우모형적광보。실험중대비료교정양본수화모형교정위치대교정결과적영향,분별종품충정성감별준학성화교정전후주광보수거화종광보수거분포거리량방면분석료실험결과。결과표명,해방법능유효지해결동일의기수착채양시간추이산생적광보편이현상,대채양시간불동적측시집균득도교고적식별솔,제고료모형적로봉성화괄용범위,유실험결과가견,교정위치처우특정제취지후시,교정효과최가。
From the perspective of calibration,the present paper studies the model stability problem in qualitative analysis of NIR.Aiming at the issue of model failure caused by different data acquisition time,13 varieties of corn were used as experimen-tal material,and learning from the idea of model calibration transfer between the two instruments in quantitative analysis of NIR,the DS(direct standardization )algorithm was used to calibrate the spectra acquired at different times with the same instru-ment,that made the varieties identification model established one time able to be applied to identify the test data at different ac-quisition time.First,transfer set was selected from the master spectrum set by Kennard/Stone algorithm,the corresponding number spectrums in slave spectrum set were selected,and then DS algorithm was applied to transfer set to calculate the trans-formation function between the two sets of data.Finally,the remaining slave spectrums were transformed so that they could ap-ply to the model.This study does some experiment to discuss the impact of the number of transfer set and the location of calibra-tion on the calibration results.Respectively,the experiment results were analyzed from two aspects,one is the correct discrimi-nation rate in qualitative analysis,and the other is the distribution distance between master spectrums and slave spectrums before and after calibration.The experiment results indicate that this approach is effective to solve the spectra drift produced by sam-pling over time,can bring higher recognition rate on different sampling time test sets,also improves the robustness and applica-tion scope of the identification model,and the experiment results also indicate that the best result can be obtained with calibration locating after feature extraction.