杭州电子科技大学学报
杭州電子科技大學學報
항주전자과기대학학보
JOURNAL OF HANGZHOU DIANZI UNIVERSITY
2013年
6期
165-168
,共4页
故障诊断%BP神经网络%泵功图
故障診斷%BP神經網絡%泵功圖
고장진단%BP신경망락%빙공도
fault diagnosis%back propagation neural network%pump dynamometer card
该文将神经网络应用于抽油系统的故障诊断,根据泵功图的几何特征提取特征值作为BP神经网络的输入信号,利用自适应性以及线性映射能力,建立抽油系统输入的故障信息与输出的故障类型间的映射。通过对大量故障样本的学习将知识以权值和阈值的形式存储于网格中,最终输出抽油系统的故障类型。通过实例分析,模型具有比较高的准确性和可行性。
該文將神經網絡應用于抽油繫統的故障診斷,根據泵功圖的幾何特徵提取特徵值作為BP神經網絡的輸入信號,利用自適應性以及線性映射能力,建立抽油繫統輸入的故障信息與輸齣的故障類型間的映射。通過對大量故障樣本的學習將知識以權值和閾值的形式存儲于網格中,最終輸齣抽油繫統的故障類型。通過實例分析,模型具有比較高的準確性和可行性。
해문장신경망락응용우추유계통적고장진단,근거빙공도적궤하특정제취특정치작위BP신경망락적수입신호,이용자괄응성이급선성영사능력,건립추유계통수입적고장신식여수출적고장류형간적영사。통과대대량고장양본적학습장지식이권치화역치적형식존저우망격중,최종수출추유계통적고장류형。통과실례분석,모형구유비교고적준학성화가행성。
Neural network is used in the fault diagnosis of suck rod pumping system .The characteristic value is obtained based the geometric characteristic of the pump dynamometer card as input signals of back propagation( BP) neural networks .The relations between the network fault information and fault patterns are established utilizing the self-adaptation and nonlinearity mapping functions of the neural network . The knowledge in nets is kept in the form of weigh and threshold by learning from the fault samples , and the outputs of nets are typical models of the fault .After numerical analysis , the results indicate the feasibility and veracity of this method .