中国惯性技术学报
中國慣性技術學報
중국관성기술학보
JOURNAL OF CHINESE INERTIAL TECHNOLOGY
2014年
2期
271-275
,共5页
何星%王宏力%陆敬辉%姜伟
何星%王宏力%陸敬輝%薑偉
하성%왕굉력%륙경휘%강위
集合经验模态分解%多尺度混合建模%灰色极端学习机%随机漂移%预测
集閤經驗模態分解%多呎度混閤建模%灰色極耑學習機%隨機漂移%預測
집합경험모태분해%다척도혼합건모%회색겁단학습궤%수궤표이%예측
ensemble empirical mode decomposition%multi-scale mixed modeling%grey extreme learning machine%laser gyro random drift%prediction
针对陀螺随机漂移时间序列由于非平稳和非线性造成单一预测模型难以准确跟踪其变化趋势的问题,提出了一种基于集合经验模态分解(EEMD)和灰色极端学习机(GELM)的多尺度混合建模方法。首先,利用集合经验模态分解将随机漂移时间序列按照频率高低分解为多个本征模式分量和一个余量;然后针对不同类型时频特性分量选择合适激活函数和隐层神经元数目的GELM分别进行预测;最后,以等权相加的方式得到最终预测结果。将该方法用于某型激光陀螺随机漂移预测中,仿真结果表明:混合预测模型能够准确预测陀螺随机漂移,预测精度比残差GM(1,1)和GELM预测模型分别提高了33.43%和23.47%,可为激光陀螺的漂移补偿、故障预报和可靠性诊断提供依据。
針對陀螺隨機漂移時間序列由于非平穩和非線性造成單一預測模型難以準確跟蹤其變化趨勢的問題,提齣瞭一種基于集閤經驗模態分解(EEMD)和灰色極耑學習機(GELM)的多呎度混閤建模方法。首先,利用集閤經驗模態分解將隨機漂移時間序列按照頻率高低分解為多箇本徵模式分量和一箇餘量;然後針對不同類型時頻特性分量選擇閤適激活函數和隱層神經元數目的GELM分彆進行預測;最後,以等權相加的方式得到最終預測結果。將該方法用于某型激光陀螺隨機漂移預測中,倣真結果錶明:混閤預測模型能夠準確預測陀螺隨機漂移,預測精度比殘差GM(1,1)和GELM預測模型分彆提高瞭33.43%和23.47%,可為激光陀螺的漂移補償、故障預報和可靠性診斷提供依據。
침대타라수궤표이시간서렬유우비평은화비선성조성단일예측모형난이준학근종기변화추세적문제,제출료일충기우집합경험모태분해(EEMD)화회색겁단학습궤(GELM)적다척도혼합건모방법。수선,이용집합경험모태분해장수궤표이시간서렬안조빈솔고저분해위다개본정모식분량화일개여량;연후침대불동류형시빈특성분량선택합괄격활함수화은층신경원수목적GELM분별진행예측;최후,이등권상가적방식득도최종예측결과。장해방법용우모형격광타라수궤표이예측중,방진결과표명:혼합예측모형능구준학예측타라수궤표이,예측정도비잔차GM(1,1)화GELM예측모형분별제고료33.43%화23.47%,가위격광타라적표이보상、고장예보화가고성진단제공의거。
In view that the time series of gyro random drift can not be precisely predicted by single forecasting model due to its non-linear and non-stationary characteristics, this paper proposes a hybrid multi-scale modeling method based on ensemble empirical mode decomposition (EEMD) and grey extreme learning machine(GELM). Firstly, the drift error data is decomposed into a series of intrinsic mode function and one residue via EEMD; Secondly, GELM predicting models with appropriate activation functions and hidden nodes are constructed to predict each intrinsic mode function and residue respectively;In the end, the outputs of each predicting model are added with equal weight to obtain the final prediction result. By using the proposed method for a laser gyro random drift prediction, the experiment is made which shows that the hybrid prediction method can get more precise result than remanet GM(1,1) and GELM prediction models, whose prediction accuracy increases 33.43% and 23.47% respectively. The hybrid model could provide reliable evidence for drift compensation, fault prediction and reliability diagnoses of laser gyro.