南昌大学学报(工科版)
南昌大學學報(工科版)
남창대학학보(공과판)
JOURNAL OF NANCHANG UNIVERSITY ENGINEERING & TECHNOLOGY EDITION
2014年
3期
303-306
,共4页
局部严极小元%二阶导数%集值优化
跼部嚴極小元%二階導數%集值優化
국부엄겁소원%이계도수%집치우화
locally strict minimizer%second-order derivative%set-valued optimization
在实赋范线性空间中考虑带包含约束的集值优化问题( P)。给出了集值优化问题局部严极小元概念,在方向度量正则假设下,利用扩张锥及扩张锥内部的性质借助二阶下导数给出了( P)取得局部严极小元的必要条件。
在實賦範線性空間中攷慮帶包含約束的集值優化問題( P)。給齣瞭集值優化問題跼部嚴極小元概唸,在方嚮度量正則假設下,利用擴張錐及擴張錐內部的性質藉助二階下導數給齣瞭( P)取得跼部嚴極小元的必要條件。
재실부범선성공간중고필대포함약속적집치우화문제( P)。급출료집치우화문제국부엄겁소원개념,재방향도량정칙가설하,이용확장추급확장추내부적성질차조이계하도수급출료( P)취득국부엄겁소원적필요조건。
Set-valued optimization with inclusion constraint in real normed linear spaces was considered. The concept of locally strict minimizer for set-valued optimization was introduced. Under the hypothesis of directional metric regular,a second-order necessary optimality condition for locally strict minimizer was established by using the dilating cone and the properties of interior dilating cone with the help of second-order lower derivative.