湖南科技大学学报(自然科学版)
湖南科技大學學報(自然科學版)
호남과기대학학보(자연과학판)
JOURNAL OF HUNAN UNIVERSITY OF SCIENCE & TECHNOLOGY(NATURAL SCIENCE EDITION)
2014年
3期
24-28
,共5页
徐萍%王友才%杨光照%王凯
徐萍%王友纔%楊光照%王凱
서평%왕우재%양광조%왕개
核主成分分析%凿岩台车%传感器%故障诊断
覈主成分分析%鑿巖檯車%傳感器%故障診斷
핵주성분분석%착암태차%전감기%고장진단
kernel principal component analysis (KPCA )%rock drilling jumbo%sensor%fault detection and diagnosis
传感器状态对于凿岩台车的作业有着极其重要的影响,对其展开故障诊断十分必要。核主成分分析(KPCA)方法通过集成算子与非线性核函数计算高维特征空间的主元成分,有效捕捉过程变量中的非线性关系,将其用于传感器4种常见故障的诊断,先用Q统计量进行故障监测,再用T2贡献量百分比变化来识别故障。仿真和实际应用结果表明:KPCA方法具有很好的故障监测与诊断能力。
傳感器狀態對于鑿巖檯車的作業有著極其重要的影響,對其展開故障診斷十分必要。覈主成分分析(KPCA)方法通過集成算子與非線性覈函數計算高維特徵空間的主元成分,有效捕捉過程變量中的非線性關繫,將其用于傳感器4種常見故障的診斷,先用Q統計量進行故障鑑測,再用T2貢獻量百分比變化來識彆故障。倣真和實際應用結果錶明:KPCA方法具有很好的故障鑑測與診斷能力。
전감기상태대우착암태차적작업유착겁기중요적영향,대기전개고장진단십분필요。핵주성분분석(KPCA)방법통과집성산자여비선성핵함수계산고유특정공간적주원성분,유효포착과정변량중적비선성관계,장기용우전감기4충상견고장적진단,선용Q통계량진행고장감측,재용T2공헌량백분비변화래식별고장。방진화실제응용결과표명:KPCA방법구유흔호적고장감측여진단능력。
The Fault detection and diagnosis for sensors is important for the performance of the rock drilling jumbo seriously.The kernel principal component analysis (KPCA)effectively captures the nonlinear relationship of the process variables,which computes principal component in high-dimensional feature space by means of integral operators and nonlinear kernel functions.The KPCA method was used in diagnosing for four common sensor faults.At first its fault was detected by Q statistic,secondly its fault was identified by T2 contribution percent change.The simulation and the practical result shows the KPCA method has good performance for complex control system in sensor fault detection and diagnosis.