爆破
爆破
폭파
BLASTING
2014年
3期
57-62
,共6页
戴云波%张德明%高宇梁%张钦礼%李谢平
戴雲波%張德明%高宇樑%張欽禮%李謝平
대운파%장덕명%고우량%장흠례%리사평
炸药单耗%大块率%参数优化%BP神经网络
炸藥單耗%大塊率%參數優化%BP神經網絡
작약단모%대괴솔%삼수우화%BP신경망락
blasting crater%drilling and blasting%parameters optimized%back-propagation neural network
针对某硫铁矿生产过程中存在的爆破材料消耗大、大块率高、生产能力低等问题,根据爆破参数对爆破效果的影响的原理,选择不同的凿岩参数,在采场进行工业试验。同时以最小抵抗线、孔间距、周边孔距等作为模型的输入因子,单位炸药消耗量和大块率作为模型的输出因子,并以工业实验数据为训练样本,建立BP神经网络预测模型对爆破参数进行优化,得到最优爆破参数为:最小抵抗线0.8 m,孔间距0.9 m,周边孔孔距0.8 m,对应的炸药单耗为0.2223 kg/t,大块率为5.15豫。优化结果表明,所选参数合理,可有效降低矿山的生产成本。
針對某硫鐵礦生產過程中存在的爆破材料消耗大、大塊率高、生產能力低等問題,根據爆破參數對爆破效果的影響的原理,選擇不同的鑿巖參數,在採場進行工業試驗。同時以最小牴抗線、孔間距、週邊孔距等作為模型的輸入因子,單位炸藥消耗量和大塊率作為模型的輸齣因子,併以工業實驗數據為訓練樣本,建立BP神經網絡預測模型對爆破參數進行優化,得到最優爆破參數為:最小牴抗線0.8 m,孔間距0.9 m,週邊孔孔距0.8 m,對應的炸藥單耗為0.2223 kg/t,大塊率為5.15豫。優化結果錶明,所選參數閤理,可有效降低礦山的生產成本。
침대모류철광생산과정중존재적폭파재료소모대、대괴솔고、생산능력저등문제,근거폭파삼수대폭파효과적영향적원리,선택불동적착암삼수,재채장진행공업시험。동시이최소저항선、공간거、주변공거등작위모형적수입인자,단위작약소모량화대괴솔작위모형적수출인자,병이공업실험수거위훈련양본,건립BP신경망락예측모형대폭파삼수진행우화,득도최우폭파삼수위:최소저항선0.8 m,공간거0.9 m,주변공공거0.8 m,대응적작약단모위0.2223 kg/t,대괴솔위5.15예。우화결과표명,소선삼수합리,가유효강저광산적생산성본。
Many problems existed in pyrite mine including large consumption of blasting materials,high boulder yield and low production capacity. According to the effect of blasting parameters,different drilling parameters were selected to perform the industrial tests in stopes. At the same time,the prediction model of BP neural network was set up to obtain the optimal blasting parameter by taking minimum burden,hole spaces and peripheral hole space as in-put factors of the model,both specific charge and boulder yield as output factors and data of industrial tests as train-ing sample. The optimal blasting parameters were ultimately determined as following:minimum burden was 0. 8m, hole space was 0. 9m,peripheral hole space was 0. 8 m and the corresponding specific charge was 0. 2223 kg/t,boul-der yield was 5. 15%. The optimizing results show that the selected blasting parameters were reasonable and greatly reduced the production cost for the mine.