天津工业大学学报
天津工業大學學報
천진공업대학학보
JOURNAL OF TIANJIN POLYTECHNIC UNIVERSITY
2014年
4期
58-61
,共4页
风速序列%混沌算子%遗传算法%预测
風速序列%混沌算子%遺傳算法%預測
풍속서렬%혼돈산자%유전산법%예측
wind speed series%chaotic operator%genetic algorithm%prediction
为提高风速序列的预测性能,提出一种改进的遗传混沌算子网络预测方法。混沌算子网络由输入层、中间层和输出层3层组成,网络的输入层与中间层的连接权值采用线性衰减的方式设计,中间层混沌算子单元的激励函数为混沌映射函数,采用遗传算法优化网络的权值和混沌算子控制参数。利用差分方法对被预测序列进行平稳化预处理,结合相空间重构理论利用平稳化后的数据构造网络的训练样本。仿真实验结果表明:该方法能够实现风速序列的多步预测分析,其预测性能优于传统预测方法,尤其随着预测步长的增加,该方法具有相对稳定的预测性能。
為提高風速序列的預測性能,提齣一種改進的遺傳混沌算子網絡預測方法。混沌算子網絡由輸入層、中間層和輸齣層3層組成,網絡的輸入層與中間層的連接權值採用線性衰減的方式設計,中間層混沌算子單元的激勵函數為混沌映射函數,採用遺傳算法優化網絡的權值和混沌算子控製參數。利用差分方法對被預測序列進行平穩化預處理,結閤相空間重構理論利用平穩化後的數據構造網絡的訓練樣本。倣真實驗結果錶明:該方法能夠實現風速序列的多步預測分析,其預測性能優于傳統預測方法,尤其隨著預測步長的增加,該方法具有相對穩定的預測性能。
위제고풍속서렬적예측성능,제출일충개진적유전혼돈산자망락예측방법。혼돈산자망락유수입층、중간층화수출층3층조성,망락적수입층여중간층적련접권치채용선성쇠감적방식설계,중간층혼돈산자단원적격려함수위혼돈영사함수,채용유전산법우화망락적권치화혼돈산자공제삼수。이용차분방법대피예측서렬진행평은화예처리,결합상공간중구이론이용평은화후적수거구조망락적훈련양본。방진실험결과표명:해방법능구실현풍속서렬적다보예측분석,기예측성능우우전통예측방법,우기수착예측보장적증가,해방법구유상대은정적예측성능。
In order to enhance the prediction performance of the wind speed series, an improved chaotic operator network based on genetic algorithm is proposed. The chaotic operator network contains input layer , middle layer and output layer. The connective weights between the input layer and the middle layer are designed by the linear attenuation. The activation functions of the chaotic operators in the middle layer are chaotic map functions. Genetic algorithm is used to optimize the weights and the control parameters in the chaotic operators. Difference method is used to preprocess the predicted wind speed series as the stationary time series. Combing the phase space reconstruction theory, the training samples are constructed by the stationary time series. The simulation results show that the method proposed in the paper can complete the multi-step-ahead prediction analysis of the wind speed series, and it has better prediction performance than the conventional method. Especially, the prediction performance of the method is relatively stable as the prediction step increases.