河海大学学报(自然科学版)
河海大學學報(自然科學版)
하해대학학보(자연과학판)
JOURNAL OF HOHAI UNIVERSITY (NATURAL SCIENCES)
2014年
5期
465-470
,共6页
朱克东%郑建勇%梅军%梅飞
硃剋東%鄭建勇%梅軍%梅飛
주극동%정건용%매군%매비
变压器故障诊断%证据理论%最小二乘支持向量机%概率输出%油中溶解气体分析
變壓器故障診斷%證據理論%最小二乘支持嚮量機%概率輸齣%油中溶解氣體分析
변압기고장진단%증거이론%최소이승지지향량궤%개솔수출%유중용해기체분석
transformer fault diagnosis%DS evidence theory%LSSVM%probability output%dissolved gas analysis
为了利用相对较少的故障数据样本对变压器主要故障类型进行较准确的判断,基于智能互补和数据融合的思想,提出基于最小二乘支持向量机LSSVM( least square support vector machine)概率输出与证据理论融合的故障诊断方法。该诊断方法具有以下特点:可融合蕴含变压器运行状态的多种特征信息,输出变压器各种故障的概率,为变压器检修提供更多的可用信息;充分发挥了LSSVM在小样本情况下具有较强泛化能力的优势。算例结果表明,该诊断方法的故障诊断准确率达到91.1%,优于传统的IEC三比值法(故障诊断准确率75.6%)及LSSVM分类法(故障诊断准确率82.2%),有效降低了诊断误判的风险。
為瞭利用相對較少的故障數據樣本對變壓器主要故障類型進行較準確的判斷,基于智能互補和數據融閤的思想,提齣基于最小二乘支持嚮量機LSSVM( least square support vector machine)概率輸齣與證據理論融閤的故障診斷方法。該診斷方法具有以下特點:可融閤蘊含變壓器運行狀態的多種特徵信息,輸齣變壓器各種故障的概率,為變壓器檢脩提供更多的可用信息;充分髮揮瞭LSSVM在小樣本情況下具有較彊汎化能力的優勢。算例結果錶明,該診斷方法的故障診斷準確率達到91.1%,優于傳統的IEC三比值法(故障診斷準確率75.6%)及LSSVM分類法(故障診斷準確率82.2%),有效降低瞭診斷誤判的風險。
위료이용상대교소적고장수거양본대변압기주요고장류형진행교준학적판단,기우지능호보화수거융합적사상,제출기우최소이승지지향량궤LSSVM( least square support vector machine)개솔수출여증거이론융합적고장진단방법。해진단방법구유이하특점:가융합온함변압기운행상태적다충특정신식,수출변압기각충고장적개솔,위변압기검수제공경다적가용신식;충분발휘료LSSVM재소양본정황하구유교강범화능력적우세。산례결과표명,해진단방법적고장진단준학솔체도91.1%,우우전통적IEC삼비치법(고장진단준학솔75.6%)급LSSVM분류법(고장진단준학솔82.2%),유효강저료진단오판적풍험。
For accurate estimation of the main types of transformer faults with relatively fewer fault information samples, this paper presents an approach to transformer fault diagnosis based on the probability output of the least squares support vector machine ( LSSVM ) and DS evidence theory according to the ideas of intelligence complementarity and information fusion. This diagnosis method has the following features: it integrates multiple feature information of the operating state of the power transformer, outputs the probabilities of various transformer faults, and provides more available information for the maintenance and repair of the power transformer. This gives full play to the strong generalization ability of the LSSVM in the case of small samples. In case studies, the diagnosis accuracy of the proposed method reached 91. 1%, which was higher than that of the three-ratio method ( with an accuracy of 75. 6%) and that of the LSSVM method ( with an accuracy of 82. 2%) . The proposed method effectively reduces the risk of misdiagnosis of transformer faults.