林业科学
林業科學
임업과학
SCIENTIA SILVAE SINICAE
2014年
8期
22-29
,共8页
兴安落叶松%生物量%非线性联合估计%相容性模型
興安落葉鬆%生物量%非線性聯閤估計%相容性模型
흥안락협송%생물량%비선성연합고계%상용성모형
Larix gmelinii%biomass%nonlinear joint estimation%compatibility model
基于大兴安岭北部林区19块样地内104株天然兴安落叶松实测生物量数据,建立兴安落叶松天然林地上总量和分量相容性生物量模型,分别采用权函数和联立线性方程组消除方程的异方差和度量误差。结果表明:1)含度量误差的单木生物量相容性模型能解决总量生物量模型和分量生物量模型不兼容的问题,而且模型的预估精度高于经验模型;2)所建模型参数的决定系数 R2和模型偏差统计量,估计值的标准差 SEE、平均估计误差MPE、平均相对偏差 ME、平均相对偏差绝对值 MAE 分别为0.907~0.947,1.887~17.368,1.011%~2.703%,-4.937%~6.998%,5.408%~10.886%;3)对大兴安岭北部兴安落叶松天然林样木实测值进行统计分析,得到兴安落叶松天然林单木干材生物量占地上生物量的60.37%~76.80%,所占比例随年龄增加先增加再减小。树皮生物量占地上生物量的7.15%~20.11%,所占比例随年龄增加而减小;树枝生物量占地上生物量的8.51%~14.29%,所占比例随年龄增加基本呈现增加趋势;树叶生物量占地上生物量的5.12%~7.09%,在低林龄期时所占比例最大。
基于大興安嶺北部林區19塊樣地內104株天然興安落葉鬆實測生物量數據,建立興安落葉鬆天然林地上總量和分量相容性生物量模型,分彆採用權函數和聯立線性方程組消除方程的異方差和度量誤差。結果錶明:1)含度量誤差的單木生物量相容性模型能解決總量生物量模型和分量生物量模型不兼容的問題,而且模型的預估精度高于經驗模型;2)所建模型參數的決定繫數 R2和模型偏差統計量,估計值的標準差 SEE、平均估計誤差MPE、平均相對偏差 ME、平均相對偏差絕對值 MAE 分彆為0.907~0.947,1.887~17.368,1.011%~2.703%,-4.937%~6.998%,5.408%~10.886%;3)對大興安嶺北部興安落葉鬆天然林樣木實測值進行統計分析,得到興安落葉鬆天然林單木榦材生物量佔地上生物量的60.37%~76.80%,所佔比例隨年齡增加先增加再減小。樹皮生物量佔地上生物量的7.15%~20.11%,所佔比例隨年齡增加而減小;樹枝生物量佔地上生物量的8.51%~14.29%,所佔比例隨年齡增加基本呈現增加趨勢;樹葉生物量佔地上生物量的5.12%~7.09%,在低林齡期時所佔比例最大。
기우대흥안령북부림구19괴양지내104주천연흥안락협송실측생물량수거,건립흥안락협송천연임지상총량화분량상용성생물량모형,분별채용권함수화련립선성방정조소제방정적이방차화도량오차。결과표명:1)함도량오차적단목생물량상용성모형능해결총량생물량모형화분량생물량모형불겸용적문제,이차모형적예고정도고우경험모형;2)소건모형삼수적결정계수 R2화모형편차통계량,고계치적표준차 SEE、평균고계오차MPE、평균상대편차 ME、평균상대편차절대치 MAE 분별위0.907~0.947,1.887~17.368,1.011%~2.703%,-4.937%~6.998%,5.408%~10.886%;3)대대흥안령북부흥안락협송천연림양목실측치진행통계분석,득도흥안락협송천연림단목간재생물량점지상생물량적60.37%~76.80%,소점비례수년령증가선증가재감소。수피생물량점지상생물량적7.15%~20.11%,소점비례수년령증가이감소;수지생물량점지상생물량적8.51%~14.29%,소점비례수년령증가기본정현증가추세;수협생물량점지상생물량적5.12%~7.09%,재저림령기시소점비례최대。
Based on 104 sample tree trunk and branches parse biomass data in 19 sample plots,established the compatible model of aboveground total model and component of Larix gmelinii natural forest,by using weight function and simultaneous linear equations to eliminate heteroscedasticity and measurement error equation. The results showed that:1) Compatibility biomass model solved the total biomass model and component biomass model of incompatible problem,and the compatibility of biomass model prediction accuracy was higher than empirical model;2 ) Utilize modern built biomass model parameter determination coefficient R2 and compatibility model deviation statistics estimate the standard deviation SEE,mean estimated error MPE,mean relative deviation ME,mean relative deviation absolute MAE were 0. 907 -0. 947 ,1. 887 -17. 368 ,1. 011% -2. 703%,-4. 937% -6. 998%,5. 408% -10. 886%; 3 ) Statistical analysis of the measured values of Larix gmelinii natural forest in the northern Greater Khingan Mountains,got the region single natural forest stem biomass covered the aboveground biomass of 60. 37% -76. 80%,stem biomass proportion with the increase of forest age increased first,then decreased. Bark biomass covered the aboveground biomass of 7. 15% -20. 11%,the proportion trend of decrease with the increase of forest age. Branch biomass covered the aboveground biomass of 8. 51% -14. 29%,branch biomass proportion along with the age increasing basic rendering. Leaf biomass covered the aboveground biomass of 5. 12% -7. 09%,leaf biomass accounted for the proportion of the biggest was low forest age.