信号处理
信號處理
신호처리
SIGNAL PROCESSING
2014年
9期
1025-1033
,共9页
虹膜识别%稀疏表示%协作表示%贝叶斯融合
虹膜識彆%稀疏錶示%協作錶示%貝葉斯融閤
홍막식별%희소표시%협작표시%패협사융합
iris recognition%sparse representation%collaborative representation%Bayesian fusion
基于稀疏表示的虹膜识别方法(SRIR)相对于传统的虹膜识别方法,在处理噪声干扰等问题,识别效果相对较好,具有较好的鲁棒性。但在样本集不足的情况下,识别性能受到影响,存在运行耗时过多、计算复杂度较高的问题。针对上述问题,提出了一种联合多尺度分块和协作表示的虹膜识别算法。通过将虹膜图像按照多个尺度大小分别进行均匀分块,从而达到有效地利用虹膜特征,然后分别对每个尺度下的虹膜图像子块进行基于协作表示的识别,以降低算法耗时,最后将识别结果通过贝叶斯融合方法得到最终的分类。实验结果表明,该算法对于虹膜样本集较少的问题,比原有的SRIR方法耗时低,识别率高,复杂度低。
基于稀疏錶示的虹膜識彆方法(SRIR)相對于傳統的虹膜識彆方法,在處理譟聲榦擾等問題,識彆效果相對較好,具有較好的魯棒性。但在樣本集不足的情況下,識彆性能受到影響,存在運行耗時過多、計算複雜度較高的問題。針對上述問題,提齣瞭一種聯閤多呎度分塊和協作錶示的虹膜識彆算法。通過將虹膜圖像按照多箇呎度大小分彆進行均勻分塊,從而達到有效地利用虹膜特徵,然後分彆對每箇呎度下的虹膜圖像子塊進行基于協作錶示的識彆,以降低算法耗時,最後將識彆結果通過貝葉斯融閤方法得到最終的分類。實驗結果錶明,該算法對于虹膜樣本集較少的問題,比原有的SRIR方法耗時低,識彆率高,複雜度低。
기우희소표시적홍막식별방법(SRIR)상대우전통적홍막식별방법,재처리조성간우등문제,식별효과상대교호,구유교호적로봉성。단재양본집불족적정황하,식별성능수도영향,존재운행모시과다、계산복잡도교고적문제。침대상술문제,제출료일충연합다척도분괴화협작표시적홍막식별산법。통과장홍막도상안조다개척도대소분별진행균균분괴,종이체도유효지이용홍막특정,연후분별대매개척도하적홍막도상자괴진행기우협작표시적식별,이강저산법모시,최후장식별결과통과패협사융합방법득도최종적분류。실험결과표명,해산법대우홍막양본집교소적문제,비원유적SRIR방법모시저,식별솔고,복잡도저。
Iris recognition based sparse recognition (SRIR)is very competitive with traditional recognition approaches on effectiveness and robustness.However,the recognition rate will drop dramatically when the available training samples per subject are very limited,and the computational cost is high.To solve this problem,iris recognition is operating collabora-tive representation on multi-scale patches and combining the recognition outputs of all patches.Instead of recognition the entire iris image directly,the iris image is divided into several non-overlapping patches with the same scale.Considering the fact that patches on different scales could have complementary information for classification,iris images are patched on multi-scale.The different multi-scale patches are recognized separately based collaborative representation which reduces the computational complexity,while the ensemble of multi-scale outputs is achieved by Bayesian fusion.Experimental results on iris databases show that,although both training and testing image per subject might be very limited,the proposed meth-od outperforms the state-of-the-art recognition approaches on effectiveness and computational cost.