光电工程
光電工程
광전공정
OPTO-ELECTRONIC ENGINEERING
2014年
9期
38-44
,共7页
航空成像%稳定平台%自抗扰控制%视轴稳定%像移补偿
航空成像%穩定平檯%自抗擾控製%視軸穩定%像移補償
항공성상%은정평태%자항우공제%시축은정%상이보상
aerial imaging%stable platform%ADRC%LOS stabilization%image motion compensation
针对航空成像稳定平台工作过程中的扰动问题,本文提出采用自抗扰控制方法,对力矩波动、传感器误差等不确定因素,进行非线性的估计与动态补偿分析。该方法根据两轴直角速率陀螺平台的系统结构,导出控制系统回路的状态方程,采用跟踪-微分器安排过渡过程,非线性地观测含总扰的扩张状态变化,对反馈误差做开关式的饱和处理。由对设计系统的仿真,基于自抗扰控制模拟了航空成像稳定平台的视轴稳定与像移补偿,并对比其与PID控制在不同幅、频扰动下的跟踪效果,探讨其对不同扰动的适应能力。最后的正弦加扰的引导结果表明,自抗扰控制的影像定位精度较高,在系统受到白噪声与低频波动的干扰时,位置误差较PID控制提高了44.57%;而随输入信号与扰动频段的升高,自抗扰控制的优势有所下降。
針對航空成像穩定平檯工作過程中的擾動問題,本文提齣採用自抗擾控製方法,對力矩波動、傳感器誤差等不確定因素,進行非線性的估計與動態補償分析。該方法根據兩軸直角速率陀螺平檯的繫統結構,導齣控製繫統迴路的狀態方程,採用跟蹤-微分器安排過渡過程,非線性地觀測含總擾的擴張狀態變化,對反饋誤差做開關式的飽和處理。由對設計繫統的倣真,基于自抗擾控製模擬瞭航空成像穩定平檯的視軸穩定與像移補償,併對比其與PID控製在不同幅、頻擾動下的跟蹤效果,探討其對不同擾動的適應能力。最後的正絃加擾的引導結果錶明,自抗擾控製的影像定位精度較高,在繫統受到白譟聲與低頻波動的榦擾時,位置誤差較PID控製提高瞭44.57%;而隨輸入信號與擾動頻段的升高,自抗擾控製的優勢有所下降。
침대항공성상은정평태공작과정중적우동문제,본문제출채용자항우공제방법,대력구파동、전감기오차등불학정인소,진행비선성적고계여동태보상분석。해방법근거량축직각속솔타라평태적계통결구,도출공제계통회로적상태방정,채용근종-미분기안배과도과정,비선성지관측함총우적확장상태변화,대반궤오차주개관식적포화처리。유대설계계통적방진,기우자항우공제모의료항공성상은정평태적시축은정여상이보상,병대비기여PID공제재불동폭、빈우동하적근종효과,탐토기대불동우동적괄응능력。최후적정현가우적인도결과표명,자항우공제적영상정위정도교고,재계통수도백조성여저빈파동적간우시,위치오차교PID공제제고료44.57%;이수수입신호여우동빈단적승고,자항우공제적우세유소하강。
For aerial imaging disturbance problems in the course of the stable platform’s work, we used ADRC method for estimating uncertainties such as torque ripples and sensor errors nonlinearly while compensating them dynamically. According to the structure of two-axis Cartesian rate-gyro platform, we derived the control loop state equations, arranged transition by Track-Differentiator, and observed the extended state changes including the overall disturbance nonlinearly, handling the feedback error with switching saturation. Through designing the system, we made the simulation of LOS stabilization and image motion compensation based on ADRC, comparing its tracking effect with PID under perturbations of different amplitude and frequency, and discussed its ability to deal with different disturbances. The final sine guidance result shows that ADRC method has higher image accuracy when disturbed by white noise and low frequency fluctuations, and the position error standard deviation is 44.57% higher than that of PID. The advantage of ADRC to PID becomes smaller as the frequency of input signals and disturbances become higher.