电网技术
電網技術
전망기술
POWER SYSTEM TECHNOLOGY
2014年
9期
2363-2370
,共8页
唐芬%吴丹%周啸%Guerrero Josep M.%贾利民
唐芬%吳丹%週嘯%Guerrero Josep M.%賈利民
당분%오단%주소%Guerrero Josep M.%가이민
微电网%自治功率分配%虚拟阻抗%协调控制
微電網%自治功率分配%虛擬阻抗%協調控製
미전망%자치공솔분배%허의조항%협조공제
microgrid%autonomous power distribution%virtual impedance%coordinated control
当储能系统接口变流器的视在功率一定时,分布式多变流器型微电网系统内无功功率需求越大,储能系统对电源与负荷之间有功供需平衡的调节能力越弱。针对该问题,提出了一种无互联线潮流控制方法。该方法利用微电网系统内所有潜在的分布式无功补偿源提供负荷所需无功,以期减小储能系统功率调节压力。并通过下垂控制与倒下垂相结合的方法来实现电压控制模式与电流控制模式变流器间功率的合理分配。同时,分析了影响功率分配精度的因素,提出基于虚拟阻抗与自适应空载电压补偿相结合的方法改善无功功率分配精度。最后通过实时硬件在环平台验证了所提控制策略的可行性。
噹儲能繫統接口變流器的視在功率一定時,分佈式多變流器型微電網繫統內無功功率需求越大,儲能繫統對電源與負荷之間有功供需平衡的調節能力越弱。針對該問題,提齣瞭一種無互聯線潮流控製方法。該方法利用微電網繫統內所有潛在的分佈式無功補償源提供負荷所需無功,以期減小儲能繫統功率調節壓力。併通過下垂控製與倒下垂相結閤的方法來實現電壓控製模式與電流控製模式變流器間功率的閤理分配。同時,分析瞭影響功率分配精度的因素,提齣基于虛擬阻抗與自適應空載電壓補償相結閤的方法改善無功功率分配精度。最後通過實時硬件在環平檯驗證瞭所提控製策略的可行性。
당저능계통접구변류기적시재공솔일정시,분포식다변류기형미전망계통내무공공솔수구월대,저능계통대전원여부하지간유공공수평형적조절능력월약。침대해문제,제출료일충무호련선조류공제방법。해방법이용미전망계통내소유잠재적분포식무공보상원제공부하소수무공,이기감소저능계통공솔조절압력。병통과하수공제여도하수상결합적방법래실현전압공제모식여전류공제모식변류기간공솔적합리분배。동시,분석료영향공솔분배정도적인소,제출기우허의조항여자괄응공재전압보상상결합적방법개선무공공솔분배정도。최후통과실시경건재배평태험증료소제공제책략적가행성。
When total apparent power of the energy storage system (ESS) interfacing converter is fixed, the higher the requirement on reactive power in the microgrid system with distributed multiple converters, the weaker the ability of ESS to balance the active power between distributed generators and loads is. To reduce this limitation on ESS, a wireless power flow control method, which autonomously utilizes all potential distributed reactive compensation sources to supply reactive power needed by loads to mitigate the pressure of reactive power adjustment, is proposed. Droop control and reversed droop control are integrated to implement rational power allocation among voltage controlled mode and current controlled mode converters. Meanwhile, the factors impacting the accuracy of reactive power allocation are analyzed, and a method based on the combination of virtual impedance with adaptive no-load voltage compensation is proposed to improve the accuracy of reactive power allocation. Finally, real time hardware-in-the-loop results are presented to show the feasibility of proposed control strategy.