电网技术
電網技術
전망기술
POWER SYSTEM TECHNOLOGY
2014年
9期
2349-2355
,共7页
何舜%郑毅%蔡旭%吴小东%时珊珊
何舜%鄭毅%蔡旭%吳小東%時珊珊
하순%정의%채욱%오소동%시산산
微网%能源管理系统%分布式能源%储能%可平移负荷%滚动优化%粒子群算法
微網%能源管理繫統%分佈式能源%儲能%可平移負荷%滾動優化%粒子群算法
미망%능원관리계통%분포식능원%저능%가평이부하%곤동우화%입자군산법
microgrid%energy management system%DG%storage%shiftable load%receding horizon optimization%PSO
以上海某园区微网为例,提出一种包含分布式能源、储能、可平移负荷3类电力资源的能源管理优化方法。该方法首先将可再生能源进行完全消纳,然后运用可控分布式能源、储能和可平移负荷对削减后的微网负荷进行第二轮优化。考虑到优化问题存在大量的非线性规划,提出分解迭代算法,将“源-荷-储”3类可控资源利用粒子群算法进行独立求解,并通过迭代使得整体解逼近全局最优解。同时,本系统针对微网预测困难,提出滚动优化方法,提高整体优化的准确性和实时性。算例结果验证了该方法的有效性。
以上海某園區微網為例,提齣一種包含分佈式能源、儲能、可平移負荷3類電力資源的能源管理優化方法。該方法首先將可再生能源進行完全消納,然後運用可控分佈式能源、儲能和可平移負荷對削減後的微網負荷進行第二輪優化。攷慮到優化問題存在大量的非線性規劃,提齣分解迭代算法,將“源-荷-儲”3類可控資源利用粒子群算法進行獨立求解,併通過迭代使得整體解逼近全跼最優解。同時,本繫統針對微網預測睏難,提齣滾動優化方法,提高整體優化的準確性和實時性。算例結果驗證瞭該方法的有效性。
이상해모완구미망위례,제출일충포함분포식능원、저능、가평이부하3류전력자원적능원관리우화방법。해방법수선장가재생능원진행완전소납,연후운용가공분포식능원、저능화가평이부하대삭감후적미망부하진행제이륜우화。고필도우화문제존재대량적비선성규화,제출분해질대산법,장“원-하-저”3류가공자원이용입자군산법진행독립구해,병통과질대사득정체해핍근전국최우해。동시,본계통침대미망예측곤난,제출곤동우화방법,제고정체우화적준학성화실시성。산례결과험증료해방법적유효성。
Taking a certain Sci-tech Park's microgrid in Shanghai as example, an energy source management optimization method, in which three electric power resources such as distributed generation, energy storage system and shiftable load are included, is proposed. In the proposed method firstly the output of renewable energy sources are fully consumed by the load in the park; then the controllable DGs, energy storage system and shiftable load are utilized to perform the second round optimization for the load that has been reduced. Considering the fact that there are a lot of non-linear programmings in the optimization problem, a decomposition iteration algorithm, which independently solves three kinds of controllable resources such as DG, load and energy storage by particle swarm optimization (PSO) to make the solutions of the three kinds of controllable resources closed to globally optimal solution through iterations, is put forward. Besides, in allusion to the difficulty in load prediction due to the randomness of the load in microgrid, a receding horizon optimization method is given to improve the accuracy and real-time of global optimization. The effectiveness of the given method is validated by the results of case calculation.