中国机械工程
中國機械工程
중국궤계공정
CHINA MECHANICAl ENGINEERING
2014年
18期
2527-2531
,共5页
王新宝%谢延敏%乔良%王杰
王新寶%謝延敏%喬良%王傑
왕신보%사연민%교량%왕걸
分块压边力%鱼群算法%BP神经网络%粒子群算法
分塊壓邊力%魚群算法%BP神經網絡%粒子群算法
분괴압변력%어군산법%BP신경망락%입자군산법
several segmental binder force%fish swarm algorithm%BP neural network%particle swarm optimization(PSO)
采用人工鱼群算法与BP神经网络相结合的方法建立了分块压边力与成形质量的映射关系。首先以分块压边力为设计变量,通过基于最大最小原则的拉丁超立方取样设计方法抽取了BP神经网络的训练样本,并将通过仿真软件获得的成形质量指标作为BP神经网络的训练输出;其次通过人工鱼群算法优化的BP神经网络建立了分块压边力与成形质量的映射关系;然后采用粒子群算法对该映射函数关系式进行优化,得到最优分块压边力;最后将该最优分块压边力成形效果与整体压边力成形效果进行对比,结果表明成形效果大大改善。研究表明,采用该方法可以快速计算最优分块压边力,克服了分块压边力计算困难的缺点。
採用人工魚群算法與BP神經網絡相結閤的方法建立瞭分塊壓邊力與成形質量的映射關繫。首先以分塊壓邊力為設計變量,通過基于最大最小原則的拉丁超立方取樣設計方法抽取瞭BP神經網絡的訓練樣本,併將通過倣真軟件穫得的成形質量指標作為BP神經網絡的訓練輸齣;其次通過人工魚群算法優化的BP神經網絡建立瞭分塊壓邊力與成形質量的映射關繫;然後採用粒子群算法對該映射函數關繫式進行優化,得到最優分塊壓邊力;最後將該最優分塊壓邊力成形效果與整體壓邊力成形效果進行對比,結果錶明成形效果大大改善。研究錶明,採用該方法可以快速計算最優分塊壓邊力,剋服瞭分塊壓邊力計算睏難的缺點。
채용인공어군산법여BP신경망락상결합적방법건립료분괴압변력여성형질량적영사관계。수선이분괴압변력위설계변량,통과기우최대최소원칙적랍정초립방취양설계방법추취료BP신경망락적훈련양본,병장통과방진연건획득적성형질량지표작위BP신경망락적훈련수출;기차통과인공어군산법우화적BP신경망락건립료분괴압변력여성형질량적영사관계;연후채용입자군산법대해영사함수관계식진행우화,득도최우분괴압변력;최후장해최우분괴압변력성형효과여정체압변력성형효과진행대비,결과표명성형효과대대개선。연구표명,채용해방법가이쾌속계산최우분괴압변력,극복료분괴압변력계산곤난적결점。
Relationship of several segmental binder force and forming quality was bulit ,which was based on BP neural network and fish swarm algorithm .The first approach was gotten training samples for BP neural network by Latin hypercube designs based on maximum and minimum princi-ple .Then simulation software was used to get forming quality and used as training outputs for BP neural network .Fish swarm algorithm was used to optimize BP neural network ,which built relation-ship of several segmental binder force and forming quality .PSO was adopted to obtain optimal result of function relation .Compared with whole binder force ,forming quality is improved greatly .The re-search fruits indicate that the method can calculate optimal several segmental binder force quickly .It can make up computational difficulties of several segmental binder force .