西部林业科学
西部林業科學
서부임업과학
JOURNAL OF WEST CHINA FORESTRY SCIENCE
2014年
3期
1-6
,共6页
李耀翔%汪洪涛%耿志伟%张鹏%徐浩凯
李耀翔%汪洪濤%耿誌偉%張鵬%徐浩凱
리요상%왕홍도%경지위%장붕%서호개
近红外光谱技术%BP神经网络%森林土壤碳含量
近紅外光譜技術%BP神經網絡%森林土壤碳含量
근홍외광보기술%BP신경망락%삼림토양탄함량
near infrared reflectance spectroscopy (NIRS) technology%BP neural network%forestry soil carbon (SOC) content
为快速测定森林土壤的有机碳含量,从取自小兴安岭带岭林业局东方红林场的120个土壤样品中采集350~2500 nm的土壤近红外光谱数据,对光谱做一定的预处理后,运用主成分分析法压缩提取前8个主成分,结合BP神经网络非线性方法建立土壤有机碳含量的预测模型并进行验证。结果表明,验证集的相关系数为0.78002,均方根误差为0.5002,预测集的相关系数为0.84941,均方根误差为0.4538。应用近红外光谱技术及BP神经网络非线性方法建模可以有效地预测土壤的有机碳含量,为野外大面积快速测定森林土壤碳含量提供了技术依据。
為快速測定森林土壤的有機碳含量,從取自小興安嶺帶嶺林業跼東方紅林場的120箇土壤樣品中採集350~2500 nm的土壤近紅外光譜數據,對光譜做一定的預處理後,運用主成分分析法壓縮提取前8箇主成分,結閤BP神經網絡非線性方法建立土壤有機碳含量的預測模型併進行驗證。結果錶明,驗證集的相關繫數為0.78002,均方根誤差為0.5002,預測集的相關繫數為0.84941,均方根誤差為0.4538。應用近紅外光譜技術及BP神經網絡非線性方法建模可以有效地預測土壤的有機碳含量,為野外大麵積快速測定森林土壤碳含量提供瞭技術依據。
위쾌속측정삼림토양적유궤탄함량,종취자소흥안령대령임업국동방홍림장적120개토양양품중채집350~2500 nm적토양근홍외광보수거,대광보주일정적예처리후,운용주성분분석법압축제취전8개주성분,결합BP신경망락비선성방법건립토양유궤탄함량적예측모형병진행험증。결과표명,험증집적상관계수위0.78002,균방근오차위0.5002,예측집적상관계수위0.84941,균방근오차위0.4538。응용근홍외광보기술급BP신경망락비선성방법건모가이유효지예측토양적유궤탄함량,위야외대면적쾌속측정삼림토양탄함량제공료기술의거。
To rapidly determine forest SOC content , the spectra of 120 soils samples from Dongfanghong forest farm of Dailing Forestry Bureau located in the northeast Lesser Khingan Mountains were scanned with a vis -NIR spectrometer in the 350 to 2 500 nm after some pretreats , and the first eight principal components were compressed and gained by principal component analysis ( PCA ) . With combination of BP neural network nonlinear method , the prediction model of SOC content were established and validated .The result showed that the correlation coeffi-cient (R) and root mean square error (RMSE) of validation and test set were 0.780 02, 0.849 41 and 0.500 2, 0.453 8 respectively .In this sense , NIR technology and BP neural network nonlinear method could be a good tool in the prediction of SOC content , and could provide a feasibility to determine forest SOC content in the field widely and quickly .