西安电子科技大学学报(自然科学版)
西安電子科技大學學報(自然科學版)
서안전자과기대학학보(자연과학판)
JOURNAL OF XIDIAN UNIVERSITY(NATURAL SCIENCE)
2014年
3期
192-195,220
,共5页
语音端点检测%信号变化率测度%Burg 谱估计%低信噪比%非平稳性
語音耑點檢測%信號變化率測度%Burg 譜估計%低信譟比%非平穩性
어음단점검측%신호변화솔측도%Burg 보고계%저신조비%비평은성
voice endpoint detection%long-term signal variability measure%Burg spectrum estimate%low signal-to-noise ratio%nonstationarity
针对现有基于特征的语音端点检测方法在低信噪比及非平稳噪声下检测性能较低的问题,提出了一种融合 Burg 谱估计与长时段信号变化率测度(LTSV)的语音端点检测方法。该方法采用表征较长时段语音变化率的 LTSV 参数,较准确地反映了语音的非平稳程度。与传统基于特征的语音端点检测方法相比,该方法在低信噪比及非平稳噪声情况下的检测性能有了较大提高。并融合 Burg 谱估计,与传统 Welch谱估计方法相比,提高了 LTSV 参数的区分度,从而进一步提高了检测的准确率。仿真结果表明:采用融合Burg 谱估计与 LTSV 的语音端点检测方法在低信噪比(-10 dB)及非平稳噪声情况下,与传统基于特征的语音端点检测方法相比,检测准确率普遍提高了约6%以上,说明该方法在低信噪比及非平稳噪声环境下鲁棒性更好。
針對現有基于特徵的語音耑點檢測方法在低信譟比及非平穩譟聲下檢測性能較低的問題,提齣瞭一種融閤 Burg 譜估計與長時段信號變化率測度(LTSV)的語音耑點檢測方法。該方法採用錶徵較長時段語音變化率的 LTSV 參數,較準確地反映瞭語音的非平穩程度。與傳統基于特徵的語音耑點檢測方法相比,該方法在低信譟比及非平穩譟聲情況下的檢測性能有瞭較大提高。併融閤 Burg 譜估計,與傳統 Welch譜估計方法相比,提高瞭 LTSV 參數的區分度,從而進一步提高瞭檢測的準確率。倣真結果錶明:採用融閤Burg 譜估計與 LTSV 的語音耑點檢測方法在低信譟比(-10 dB)及非平穩譟聲情況下,與傳統基于特徵的語音耑點檢測方法相比,檢測準確率普遍提高瞭約6%以上,說明該方法在低信譟比及非平穩譟聲環境下魯棒性更好。
침대현유기우특정적어음단점검측방법재저신조비급비평은조성하검측성능교저적문제,제출료일충융합 Burg 보고계여장시단신호변화솔측도(LTSV)적어음단점검측방법。해방법채용표정교장시단어음변화솔적 LTSV 삼수,교준학지반영료어음적비평은정도。여전통기우특정적어음단점검측방법상비,해방법재저신조비급비평은조성정황하적검측성능유료교대제고。병융합 Burg 보고계,여전통 Welch보고계방법상비,제고료 LTSV 삼수적구분도,종이진일보제고료검측적준학솔。방진결과표명:채용융합Burg 보고계여 LTSV 적어음단점검측방법재저신조비(-10 dB)급비평은조성정황하,여전통기우특정적어음단점검측방법상비,검측준학솔보편제고료약6%이상,설명해방법재저신조비급비평은조성배경하로봉성경호。
Voice Endpoint Detection is challenging , especially in nonstationary noise and a low signal-to-noise ratio( SNR) , so this paper proposes a novel Robust Voice Endpoint Detection method fusing Burg spectrum estimate and long-term signal variability ( LTSV ) . This method uses a novel long-term signal variability measure , by which the degree of nonstationarity in various signals can be indicated . Comparison with the traditional Voice Endpoint Detection method based on signal features , this method's detection performance has been greatly improved under the condition of a low signal-to-noise ratio and nonstationary noise . Also , Burg spectrum estimate is proposed , which improves the LTSV parameter discrimination degree , thus further improving the detection accuracy . Simulation results show that in comparison with the standard Voice Endpoint Detection method , the new method's accuracy is generally improved by more than about 6% , which shows that the new method has better robustness in the non-stationary noise and low signal-to-noise ratio environment .