铁道学报
鐵道學報
철도학보
2014年
6期
47-54
,共8页
动车组列车制动系统%广义预测控制%Hammerstein模型%思维进化算法%CRH2型动车组
動車組列車製動繫統%廣義預測控製%Hammerstein模型%思維進化算法%CRH2型動車組
동차조열차제동계통%엄의예측공제%Hammerstein모형%사유진화산법%CRH2형동차조
EM U braking system%generalized predictive control%Hammerstein model%mind evolutionary al-gorithm%EM U CRH2
鉴于动车组列车制动控制在运行和ATO中的重要性,以 Hammerstein模型为基础,设计动车组列车制动系统的广义预测控制GPC器。把Hammerstein模型看作静态子系统和动态子系统的串联,动态子系统辨识为CARIM A模型,用思维进化算法M EA辨识由动态子系统纯延时环节和外界干扰造成的模型误差,设计基于M EA误差修正的GPC器,得出中间量。根据动车组列车制动特性对中间量进行约束化处理,使处理后的中间量和制动级位实现一一对应关系。对描述静态子系统的静态函数求逆,得到制动系统的制动级位。以C R H2型动车组为仿真对象,比较PID和GPC的控制效果,证明M EA修正误差的有效性,验证GPC器控制动车组列车制动系统的优越性。
鑒于動車組列車製動控製在運行和ATO中的重要性,以 Hammerstein模型為基礎,設計動車組列車製動繫統的廣義預測控製GPC器。把Hammerstein模型看作靜態子繫統和動態子繫統的串聯,動態子繫統辨識為CARIM A模型,用思維進化算法M EA辨識由動態子繫統純延時環節和外界榦擾造成的模型誤差,設計基于M EA誤差脩正的GPC器,得齣中間量。根據動車組列車製動特性對中間量進行約束化處理,使處理後的中間量和製動級位實現一一對應關繫。對描述靜態子繫統的靜態函數求逆,得到製動繫統的製動級位。以C R H2型動車組為倣真對象,比較PID和GPC的控製效果,證明M EA脩正誤差的有效性,驗證GPC器控製動車組列車製動繫統的優越性。
감우동차조열차제동공제재운행화ATO중적중요성,이 Hammerstein모형위기출,설계동차조열차제동계통적엄의예측공제GPC기。파Hammerstein모형간작정태자계통화동태자계통적천련,동태자계통변식위CARIM A모형,용사유진화산법M EA변식유동태자계통순연시배절화외계간우조성적모형오차,설계기우M EA오차수정적GPC기,득출중간량。근거동차조열차제동특성대중간량진행약속화처리,사처리후적중간량화제동급위실현일일대응관계。대묘술정태자계통적정태함수구역,득도제동계통적제동급위。이C R H2형동차조위방진대상,비교PID화GPC적공제효과,증명M EA수정오차적유효성,험증GPC기공제동차조열차제동계통적우월성。
Considering the importance of the EMU braking controller in ATO ,this paper proposed the General-ized Predictive Control (GPC ) over the EM U braking system based on its Hammerstein model .Firstly ,the Hammerstein model was seen as a series system that included a static subsystem and a dynamic subsystem .The dynamic subsystem was described as the CARIMA model .The static subsystem was described as a static func-tion .The Mind Evolutionary Algorithm (MEA) amended the errors of the model of the dynamic subsystem caused by time delay and external disturbance .Based on these thoughts the non-line generalized predictive con-troller of the dynamic subsystem was designed and the intermediate variable ,namely ,the input of the dynamic subsystem ,was obtained .Secondly ,a corroding to the characteristics of the EMU breaking system ,the interme-diate variable was constrained in order to correspond to the actual control value .Then ,the inverse algorithm of the static function was executed and the input of the EM U breaking system was achieved .Finally ,simulation re-sults of EM U CRH2 prove that the M EA amending method is effective and the GPC is superior to PID .