计算机工程
計算機工程
계산궤공정
COMPUTER ENGINEERING
2013年
12期
223-227,232
,共6页
支持向量机%样本不平衡%视觉多样性%二阶段SVM偏移方法%相关反馈%超平面三原则
支持嚮量機%樣本不平衡%視覺多樣性%二階段SVM偏移方法%相關反饋%超平麵三原則
지지향량궤%양본불평형%시각다양성%이계단SVM편이방법%상관반궤%초평면삼원칙
Support Vector Machine(SVM)%sample imbalance%visual diversity%offset method of two stage SVM%relevance feedback%three principles of hyperplane
在基于内容的图像检索中,支持向量机(SVM)的分类性能不仅受到样本不平衡的影响,而且由于图像的视觉多样性,导致在分类超平面附近找不到正例样本,无法提高分类器性能。针对上述问题,提出一种二阶段的SVM超平面偏移方法。根据样本的不平衡性进行超平面的相对偏移,使得当前超平面向理论的最优超平面移动,以此为基础进行相关反馈,并根据反馈结果运用超平面三原则对当前的偏移超平面再进行偏移,以解决图像的视觉多样性问题,从而得到能够提高检索精度的分类超平面。实验结果证明,与基于SVM的标准图像检索方法相比,该方法能大幅提升样本集的分类性能,使图像的检索精度平均提高16%。
在基于內容的圖像檢索中,支持嚮量機(SVM)的分類性能不僅受到樣本不平衡的影響,而且由于圖像的視覺多樣性,導緻在分類超平麵附近找不到正例樣本,無法提高分類器性能。針對上述問題,提齣一種二階段的SVM超平麵偏移方法。根據樣本的不平衡性進行超平麵的相對偏移,使得噹前超平麵嚮理論的最優超平麵移動,以此為基礎進行相關反饋,併根據反饋結果運用超平麵三原則對噹前的偏移超平麵再進行偏移,以解決圖像的視覺多樣性問題,從而得到能夠提高檢索精度的分類超平麵。實驗結果證明,與基于SVM的標準圖像檢索方法相比,該方法能大幅提升樣本集的分類性能,使圖像的檢索精度平均提高16%。
재기우내용적도상검색중,지지향량궤(SVM)적분류성능불부수도양본불평형적영향,이차유우도상적시각다양성,도치재분류초평면부근조불도정례양본,무법제고분류기성능。침대상술문제,제출일충이계단적SVM초평면편이방법。근거양본적불평형성진행초평면적상대편이,사득당전초평면향이론적최우초평면이동,이차위기출진행상관반궤,병근거반궤결과운용초평면삼원칙대당전적편이초평면재진행편이,이해결도상적시각다양성문제,종이득도능구제고검색정도적분류초평면。실험결과증명,여기우SVM적표준도상검색방법상비,해방법능대폭제승양본집적분류성능,사도상적검색정도평균제고16%。
In the content-based image retrieval, aiming to the problem that the classification performance of Support Vector Machine (SVM) not only is affected by the sample imbalance, but also the visual diversity of images causes positive samples can not be found near the classification hyperplane, and the classification performance can not be improved, this paper proposes an offset method of two stage SVM hyperplane. According to the sample imbalance, the method moves the hyperplane to theoretical optimal hyperplane, and does relevant feedback based on this hyperplane, and according to the result of feedback, it utilizes the three principles of hyperplane to offset the current hyperplane and solves the visual diversity problem, so the better classification hyperplane can be got which has better retrieval precision. Experimental results show that compared with the standard SVM image retrieval method, the method can greatly improve the classification performance of the samples, and has an average of 16% of the performance improvement on retrieval accuracy of image retrieval.