计算机工程
計算機工程
계산궤공정
COMPUTER ENGINEERING
2013年
12期
141-143,147
,共4页
分布环签名%无证书%计算性Diffie-Hellman问题%无双线性对运算%存取结构%门限环签名
分佈環籤名%無證書%計算性Diffie-Hellman問題%無雙線性對運算%存取結構%門限環籤名
분포배첨명%무증서%계산성Diffie-Hellman문제%무쌍선성대운산%존취결구%문한배첨명
distributed ring signature%certificateless%Computational Diffie-Hellman Problem(CDHP)%operation without bilinear pairing%access structure%threshold ring signature
现有分布环签名方案大多基于双线性对运算或模指运算,计算效率不高。针对该问题,提出一种无双线性对运算和模指运算的无证书分布环签名方案,只进行椭圆曲线上的模乘运算。通过复杂度分析结果证明该方案是高效的,仅需2s+3t-2次模乘运算(t 表示存取结构中子集的个数,s 表示实际签名子集中成员的个数),并且若方案存取结构中所有子集的成员数均设为某一门限值,该方案即成为无证书门限环签名方案。
現有分佈環籤名方案大多基于雙線性對運算或模指運算,計算效率不高。針對該問題,提齣一種無雙線性對運算和模指運算的無證書分佈環籤名方案,隻進行橢圓麯線上的模乘運算。通過複雜度分析結果證明該方案是高效的,僅需2s+3t-2次模乘運算(t 錶示存取結構中子集的箇數,s 錶示實際籤名子集中成員的箇數),併且若方案存取結構中所有子集的成員數均設為某一門限值,該方案即成為無證書門限環籤名方案。
현유분포배첨명방안대다기우쌍선성대운산혹모지운산,계산효솔불고。침대해문제,제출일충무쌍선성대운산화모지운산적무증서분포배첨명방안,지진행타원곡선상적모승운산。통과복잡도분석결과증명해방안시고효적,부수2s+3t-2차모승운산(t 표시존취결구중자집적개수,s 표시실제첨명자집중성원적개수),병차약방안존취결구중소유자집적성원수균설위모일문한치,해방안즉성위무증서문한배첨명방안。
The previous distributed ring signature schemes need bilinear pairing operation or exponent operation, and their computation efficiency is not high. For improving the efficient of operations, a new certificateless distributed ring signature scheme without bilinear pairings operation or exponent operation is proposed. The scheme only needs a modular multiplication on elliptic curves. The results of complexity analysis show that the proposed scheme is efficient, and it only needs 2s+3t-2 modular multiplication(t is the number of subsets of access structure, s is the number of members of actual signing subset). In addition, the scheme becomes a certificateless threshold ring signature scheme when the number of all subsets members of access structure is set to a certain threshold value.