动力工程学报
動力工程學報
동력공정학보
JOURNAL OF POWER ENGINEERING
2012年
6期
454-457,462
,共5页
石志标%宋全刚%马明钊%李祺
石誌標%宋全剛%馬明釗%李祺
석지표%송전강%마명쇠%리기
汽轮机组%振动%故障诊断%支持向量机%粒子群算法%遗传算法
汽輪機組%振動%故障診斷%支持嚮量機%粒子群算法%遺傳算法
기륜궤조%진동%고장진단%지지향량궤%입자군산법%유전산법
steam turbine set%vibration%fault diagnosis%support vector machine%particle swarm optimization%genetic algorithm
基于支持向量机(SVM)在核函数参数和惩罚因子人为选取的盲目性以及传统粒子群算法(PSO)后期易陷于局部最小值的不足,提出了一种改进的粒子群算法(MPSO),建立了汽轮机组振动故障诊断模型并且利用故障数据进行了模式识别.结果表明:模型能够对SVM相关参数自动寻优,并且能达到较为理想的全局最优解;与PSO-SVM和GA-SVM算法相比,MPSO-SVM算法在收敛速度和准确率方面都有所提高.
基于支持嚮量機(SVM)在覈函數參數和懲罰因子人為選取的盲目性以及傳統粒子群算法(PSO)後期易陷于跼部最小值的不足,提齣瞭一種改進的粒子群算法(MPSO),建立瞭汽輪機組振動故障診斷模型併且利用故障數據進行瞭模式識彆.結果錶明:模型能夠對SVM相關參數自動尋優,併且能達到較為理想的全跼最優解;與PSO-SVM和GA-SVM算法相比,MPSO-SVM算法在收斂速度和準確率方麵都有所提高.
기우지지향량궤(SVM)재핵함수삼수화징벌인자인위선취적맹목성이급전통입자군산법(PSO)후기역함우국부최소치적불족,제출료일충개진적입자군산법(MPSO),건립료기륜궤조진동고장진단모형병차이용고장수거진행료모식식별.결과표명:모형능구대SVM상관삼수자동심우,병차능체도교위이상적전국최우해;여PSO-SVM화GA-SVM산법상비,MPSO-SVM산법재수렴속도화준학솔방면도유소제고.
To overcome the blindness of artificial selection for nuclear function parameters and penalty fac tors by Support Vector Machine (SVM) as well as the deficiency of easily falling into local minimum at lat er stage of traditional Particle Swarm Optimization (PSO), a vibration fault diagnosis model has been es tablished for steam turbine based on a newly proposed modified particle swarm optimization (MPSO) algo rithm, with which pattern recognition is performed to realize automatic optimization on relevant SVM pared with PSO SVM and GA-SVM method, the and higher classification accuracy. using fault data. Results show that the model can help parameters and achieve global optimal solution. ComMPSO-SVM algorithm has a faster convergence speed