动力工程学报
動力工程學報
동력공정학보
JOURNAL OF POWER ENGINEERING
2011年
9期
709-714
,共6页
陈鸿伟%王威威%黄新章%赵争辉
陳鴻偉%王威威%黃新章%趙爭輝
진홍위%왕위위%황신장%조쟁휘
纤维素生物质%热解%动力学分析%最概然机理函数
纖維素生物質%熱解%動力學分析%最概然機理函數
섬유소생물질%열해%동역학분석%최개연궤리함수
cellulosic biomass%pyrolysis%dynamics analysis%the most probable mechanism function
采用化学方法测量纤维素生物质稻秆、棉秆及松木屑的纤维素及木质素含量,利用Malek法逻辑选择得到较合理的最概然机理函数G(α)或f(α),并通过热重法分析纤维素含量对热解特性的影响规律.结果表明:纤维素含量越高,热解速率越大;木质素含量越高,热解速率越小;随着样品升温速率的提高,热解曲线向低温区偏移,热解速度加快;样品粒径越小,颗粒间的空隙越小,传质传递的阻力增大,失重速率降低,最大反应速率降低;利用Malek法推断最概然机理函数十分有效,通过分析得到稻秆热解过程应分为两个阶段分别建立动力学模型,前段采用D1模型,后段采用F1模型.
採用化學方法測量纖維素生物質稻稈、棉稈及鬆木屑的纖維素及木質素含量,利用Malek法邏輯選擇得到較閤理的最概然機理函數G(α)或f(α),併通過熱重法分析纖維素含量對熱解特性的影響規律.結果錶明:纖維素含量越高,熱解速率越大;木質素含量越高,熱解速率越小;隨著樣品升溫速率的提高,熱解麯線嚮低溫區偏移,熱解速度加快;樣品粒徑越小,顆粒間的空隙越小,傳質傳遞的阻力增大,失重速率降低,最大反應速率降低;利用Malek法推斷最概然機理函數十分有效,通過分析得到稻稈熱解過程應分為兩箇階段分彆建立動力學模型,前段採用D1模型,後段採用F1模型.
채용화학방법측량섬유소생물질도간、면간급송목설적섬유소급목질소함량,이용Malek법라집선택득도교합리적최개연궤리함수G(α)혹f(α),병통과열중법분석섬유소함량대열해특성적영향규률.결과표명:섬유소함량월고,열해속솔월대;목질소함량월고,열해속솔월소;수착양품승온속솔적제고,열해곡선향저온구편이,열해속도가쾌;양품립경월소,과립간적공극월소,전질전체적조력증대,실중속솔강저,최대반응속솔강저;이용Malek법추단최개연궤리함수십분유효,통과분석득도도간열해과정응분위량개계단분별건립동역학모형,전단채용D1모형,후단채용F1모형.
Contents of cellulose and lignin in three types of cellulosic biomass were analyzed chemically, which are specifically rice stems, cotton stalk and pine wood scraps. The most probable mechanism function G(α) or f(α) was predicted using Malek method, while the influence of cellulose content on pyrolysis characteristics of the biomass studied by thermogravimetric analysis. Results show that the more the cellu- lose content is, the higher the pyrolysis rate will be; the more the lignin content is, the smaller the pyrolysis rate will be; the pyrolysis curves move toward low-temperature area with rising heating rate of pyrolytic samples, and simultaneously the pyrolysis rate grows; the finer the particle size is, the smaller the gap between particles will be, resulting in increased resistance of mass transfer, reduced weightlessness and lowered maximum reaction rate. The Malek method for predicting the most probable mechanism function is proved to be effective. Analysis results indicate that the pyrolytic process should be divided into front and back two stages, for which respective models are to be built up, namely model D1 for front stage and model F1 for back stage.