成都大学学报:自然科学版
成都大學學報:自然科學版
성도대학학보:자연과학판
Journal of Chengdu University (Natural Science)
2011年
4期
317-319
,共3页
性质(I)%同伦等价%同构
性質(I)%同倫等價%同構
성질(I)%동륜등개%동구
property(I)%homotopy equivalence%isomorphism
三角结构是DG范畴的重要内容,其中,同伦极限理论是讨论三角结构的有力工具.一个DG模具有性质(P)指的是它具有被3个条件限制的特殊的filtration,但是其中极限过程这一条件可以被一个更为简洁的条件所取代,Keller证明了DG范畴中性质(P)的极限调整定理.文章首先证明了从具有性质(I)的DG模I出发能得到H A中的标准三角,并由此得DG范畴中性质(I)的极限调整定理及其证明.
三角結構是DG範疇的重要內容,其中,同倫極限理論是討論三角結構的有力工具.一箇DG模具有性質(P)指的是它具有被3箇條件限製的特殊的filtration,但是其中極限過程這一條件可以被一箇更為簡潔的條件所取代,Keller證明瞭DG範疇中性質(P)的極限調整定理.文章首先證明瞭從具有性質(I)的DG模I齣髮能得到H A中的標準三角,併由此得DG範疇中性質(I)的極限調整定理及其證明.
삼각결구시DG범주적중요내용,기중,동륜겁한이론시토론삼각결구적유력공구.일개DG모구유성질(P)지적시타구유피3개조건한제적특수적filtration,단시기중겁한과정저일조건가이피일개경위간길적조건소취대,Keller증명료DG범주중성질(P)적겁한조정정리.문장수선증명료종구유성질(I)적DG모I출발능득도H A중적표준삼각,병유차득DG범주중성질(I)적겁한조정정리급기증명.
Triangulate structure is an important content of DG categories.Homotopy limit theory is a powerful tool for discussing triangulate structure.A DG module with property(P) refers that it has a sequence of special filtration confined by three conditions.However one of the conditions,limiting process can be replaced by another more convenient and simpler one.The theorem of adjusting limits of property(P) in DG categories was firstly proved by B.Keller.Firstly the canonical triangulate structure in HA starting from module I of DG categories with property(P) was proved in this article.The adjusting limits of property(I) in DG categories as well as its proof of the theorem was obtained.