核聚变与等离子体物理
覈聚變與等離子體物理
핵취변여등리자체물리
NUCLEAR FUSION AND PLASMA PHYSICS
2014年
2期
118-125
,共8页
田树平%曹小岗%杨党校%陶科伟%张静全%潘宇东%苟富均
田樹平%曹小崗%楊黨校%陶科偉%張靜全%潘宇東%茍富均
전수평%조소강%양당교%도과위%장정전%반우동%구부균
分子动力学%聚变材料%沉积率%溅射率%散射
分子動力學%聚變材料%沉積率%濺射率%散射
분자동역학%취변재료%침적솔%천사솔%산사
Molecular dynamics%Fusion materials%Deposited rate%Sputtering rate%Scattering
采用分子动力学方法模拟200eV的CH3粒子轰击到不同基底温度的钨样品上,分析了C、H原子在钨表面的沉积、散射及溅射情况,结果表明C、H原子的沉降量均随入射剂量的增加而增加。在基底温度为100K时,相同入射剂量下沉积的C原子最多,而当基底温度为1200K,在入射剂量大于1.5×1016cm-2时,C原子的沉降量小于其它基底温度下的C的沉降量。CH3在轰击样品时发生了分解,各种分解情况随基底温度变化较小,其中不同基底温度下一级分解率在40%上下波动,二级分解在23%左右,而完全分解的CH3在9%左右。C、H原子的散射角主要分布在5°~85°间,散射C原子分布的最大值分布在40°~50°或50°~60°间,散射C原子分布的最小值分布在0°~10°或80°~90°间;而不同基底温度下散射 H 原子分布的最大值均在40°~50°间,最小值均在0°~10°间。散射C原子的能量在0~140eV之间,散射能量为0~120eV的C原子占散射总量的98%以上,散射C原子平均能量随基底温度的增加而增加,其变化从65.5eV 增加到68.5eV;散射 H 原子的能量也在0~140eV 之间,但大约70%的散射H原子能量在40eV以内,散射平均能量随基底温度的增加而减小,其变化从13.92eV减小到13.05eV。
採用分子動力學方法模擬200eV的CH3粒子轟擊到不同基底溫度的鎢樣品上,分析瞭C、H原子在鎢錶麵的沉積、散射及濺射情況,結果錶明C、H原子的沉降量均隨入射劑量的增加而增加。在基底溫度為100K時,相同入射劑量下沉積的C原子最多,而噹基底溫度為1200K,在入射劑量大于1.5×1016cm-2時,C原子的沉降量小于其它基底溫度下的C的沉降量。CH3在轟擊樣品時髮生瞭分解,各種分解情況隨基底溫度變化較小,其中不同基底溫度下一級分解率在40%上下波動,二級分解在23%左右,而完全分解的CH3在9%左右。C、H原子的散射角主要分佈在5°~85°間,散射C原子分佈的最大值分佈在40°~50°或50°~60°間,散射C原子分佈的最小值分佈在0°~10°或80°~90°間;而不同基底溫度下散射 H 原子分佈的最大值均在40°~50°間,最小值均在0°~10°間。散射C原子的能量在0~140eV之間,散射能量為0~120eV的C原子佔散射總量的98%以上,散射C原子平均能量隨基底溫度的增加而增加,其變化從65.5eV 增加到68.5eV;散射 H 原子的能量也在0~140eV 之間,但大約70%的散射H原子能量在40eV以內,散射平均能量隨基底溫度的增加而減小,其變化從13.92eV減小到13.05eV。
채용분자동역학방법모의200eV적CH3입자굉격도불동기저온도적오양품상,분석료C、H원자재오표면적침적、산사급천사정황,결과표명C、H원자적침강량균수입사제량적증가이증가。재기저온도위100K시,상동입사제량하침적적C원자최다,이당기저온도위1200K,재입사제량대우1.5×1016cm-2시,C원자적침강량소우기타기저온도하적C적침강량。CH3재굉격양품시발생료분해,각충분해정황수기저온도변화교소,기중불동기저온도하일급분해솔재40%상하파동,이급분해재23%좌우,이완전분해적CH3재9%좌우。C、H원자적산사각주요분포재5°~85°간,산사C원자분포적최대치분포재40°~50°혹50°~60°간,산사C원자분포적최소치분포재0°~10°혹80°~90°간;이불동기저온도하산사 H 원자분포적최대치균재40°~50°간,최소치균재0°~10°간。산사C원자적능량재0~140eV지간,산사능량위0~120eV적C원자점산사총량적98%이상,산사C원자평균능량수기저온도적증가이증가,기변화종65.5eV 증가도68.5eV;산사 H 원자적능량야재0~140eV 지간,단대약70%적산사H원자능량재40eV이내,산사평균능량수기저온도적증가이감소,기변화종13.92eV감소도13.05eV。
The molecular dynamics simulations of interactions between CH3 and tungsten materials of different temperature are carried out, based on the reactive empirical band order function to understand the possible mechanisms of C, H deposition and sputtering on the first wall in fusion device. The energy of incident CH3 particle is 200eV. The simulated results show that the deposition atoms of C and H increase with incident particle increasing, when substrate temperature is 100K the deposition of C atoms was more than others temperatures’, and when the substrate temperature is 1200K, the incident is greater than 1.5×1016cm-2, the deposited C atoms is less than other substrate temperatures’ deposited C atoms. CH3 was decomposed during CH3 bombardment with substrate, about 9% of the CH3 was completed decomposition; about 40% of the CH3 was decomposited to CH2 and H;about 23%of the CH3 was decomposited to CH and 2H. The scattering angle of C and H atoms are mainly distributed between 5° and 85°, the distribution of scattering angle maximum of C atom was 40°~50° or 50°~60°, the minimum distribution of C atom at between 0° and 10° or between 80° and 90°;the energy of scattered C atoms is between 0 and 140eV, more than 98%scattering atoms is between 0 and 120eV among of them, and the average scattering energy increases with the increase of substrate temperature, from 65.5eV increased to 68.5eV, The distribution maximum of H atom was 40°~50°, the minimum distribution of H atom at between 0° and 10°. Scattering energy of H atom is between 0 and 140eV, but about 70%of the scattering H atomic energy within 40eV, the average scattering energy decreases with the increase of substrate temperature, from 13.92eV decreased to 13.05eV.