郑州大学学报(医学版)
鄭州大學學報(醫學版)
정주대학학보(의학판)
JOURNAL OF ZHENGZHOU UNIVERSITY(MEDICAL SCIENCES)
2014年
3期
344-348
,共5页
于林凤%吴静%周锁兰%丁勇
于林鳳%吳靜%週鎖蘭%丁勇
우림봉%오정%주쇄란%정용
ARIMA季节模型%丙肝%发病%预测
ARIMA季節模型%丙肝%髮病%預測
ARIMA계절모형%병간%발병%예측
seasonal ARIMA model%hepatitis C%incidence%prediction
目的:应用ARIMA季节模型对我国丙肝发病进行预测。方法:利用2004年至2011年我国丙肝的月发病数建立ARIMA季节模型,对2012年丙肝的月发病数进行预测,并用实际数据评估模型的预测效果。同法对同期甲肝发病数据进行建模和预测。对丙肝和甲肝2004年至2011年的月发病数按年归一化处理后计算方差。比较甲肝和丙肝的预测效果。结果:成功建立ARIMA(1,1,1)(2,1,0)12季节模型,模型的表达式为:(1+0.222L)(1+0.820L12+0.694L24)(1-L)(1-L12)lnYt=(1+0.648L)εt,参数 AR(1)=-0.222(t=-2.392,P=0.020),SAR (12)=-0.820(t=-8.009,P<0.001),SAR(24)=-0.694(t=-6.124,P<0.001),MA(1)=-0.648(t=-5.889,P<0.001),残差序列是白噪声序列(P>0.05);模型拟合效果的R2为0.824,预测的平均相对误差为0.078。归一化后丙肝和甲肝发病数的平均方差分别为0.030和0.047,提示丙肝原始数据周期性动态变化较甲肝更趋一致。甲肝预测的平均相对误差为0.138,大于丙肝。结论:ARIMA(1,1,1)(2,l,0)12季节模型可用于预测我国丙肝的发病规律。样本数据的周期性动态变化趋势越一致,ARIMA季节模型的预测结果也越准确。
目的:應用ARIMA季節模型對我國丙肝髮病進行預測。方法:利用2004年至2011年我國丙肝的月髮病數建立ARIMA季節模型,對2012年丙肝的月髮病數進行預測,併用實際數據評估模型的預測效果。同法對同期甲肝髮病數據進行建模和預測。對丙肝和甲肝2004年至2011年的月髮病數按年歸一化處理後計算方差。比較甲肝和丙肝的預測效果。結果:成功建立ARIMA(1,1,1)(2,1,0)12季節模型,模型的錶達式為:(1+0.222L)(1+0.820L12+0.694L24)(1-L)(1-L12)lnYt=(1+0.648L)εt,參數 AR(1)=-0.222(t=-2.392,P=0.020),SAR (12)=-0.820(t=-8.009,P<0.001),SAR(24)=-0.694(t=-6.124,P<0.001),MA(1)=-0.648(t=-5.889,P<0.001),殘差序列是白譟聲序列(P>0.05);模型擬閤效果的R2為0.824,預測的平均相對誤差為0.078。歸一化後丙肝和甲肝髮病數的平均方差分彆為0.030和0.047,提示丙肝原始數據週期性動態變化較甲肝更趨一緻。甲肝預測的平均相對誤差為0.138,大于丙肝。結論:ARIMA(1,1,1)(2,l,0)12季節模型可用于預測我國丙肝的髮病規律。樣本數據的週期性動態變化趨勢越一緻,ARIMA季節模型的預測結果也越準確。
목적:응용ARIMA계절모형대아국병간발병진행예측。방법:이용2004년지2011년아국병간적월발병수건립ARIMA계절모형,대2012년병간적월발병수진행예측,병용실제수거평고모형적예측효과。동법대동기갑간발병수거진행건모화예측。대병간화갑간2004년지2011년적월발병수안년귀일화처리후계산방차。비교갑간화병간적예측효과。결과:성공건립ARIMA(1,1,1)(2,1,0)12계절모형,모형적표체식위:(1+0.222L)(1+0.820L12+0.694L24)(1-L)(1-L12)lnYt=(1+0.648L)εt,삼수 AR(1)=-0.222(t=-2.392,P=0.020),SAR (12)=-0.820(t=-8.009,P<0.001),SAR(24)=-0.694(t=-6.124,P<0.001),MA(1)=-0.648(t=-5.889,P<0.001),잔차서렬시백조성서렬(P>0.05);모형의합효과적R2위0.824,예측적평균상대오차위0.078。귀일화후병간화갑간발병수적평균방차분별위0.030화0.047,제시병간원시수거주기성동태변화교갑간경추일치。갑간예측적평균상대오차위0.138,대우병간。결론:ARIMA(1,1,1)(2,l,0)12계절모형가용우예측아국병간적발병규률。양본수거적주기성동태변화추세월일치,ARIMA계절모형적예측결과야월준학。
Aim:To forecast the incidence of hepatitis C in China using seasonal ARIMA model .Methods:Seasonal ARIMA model was established based on the monthly reported cases data of hepatitis C in China from 2004 to 2011 , and used to forecast the data of 2012 .Actual data of 2012 were used to assess prediction effect .The model establishment and forecasting for hepatitis A were carried out using the same method .The variance of hepatitis A and hepatitis C incidence from 2004 to 2011 normalized according to the years was calculated .The predicted effect of hepatitis A and hepatitis C was compared.Results:The model of ARIMA(1,1,1)(2,1,0)12 was established successfully.The expression of the model was (1+0.222L)(1+0.820L12 +0.694L24)(1-L)(1-L12)lnYt=(1+0.648L)εt,the parameters were as follows:AR(1)=-0.222(t=-2.392,P=0.020),SAR(12) =-0.820(t=-8.009,P<0.001),SAR(24) =-0.694(t=-6.124,P<0.001),MA(1) = -0.648(t=-5.889,P<0.001),residual error sequence was white noise sequence (P>0.05), the R2 of fitting was 0.824 and the averge error of prediction was 0.078.The averge variances of hepatitis C and hepatitis A normalized incidence were 0.030 and 0.047, suggesting that periodic dynamic change of hepatitis C data was more consistent.The averge relative error of prediction of hepatitis A was 0.138,higher than that of hepatitis C .Con-clusion:ARIMA(1,1,1)(2,1,0)12 season model can be used to predict incidence of hepatitis C in China .Periodic dy-namic change trend of sample data is more consistent , the ARIMA seasonal model predicted result is more accurate .