工程数学学报
工程數學學報
공정수학학보
CHINESE JOURNAL OF ENGINEERING MATHEMATICS
2014年
3期
317-323
,共7页
图%图的拓扑结构%Euler迹%字典乘积
圖%圖的拓撲結構%Euler跡%字典乘積
도%도적탁복결구%Euler적%자전승적
graph%topological structure of graph%Euler trail%lexicographic product
人们在实践中发现,网络拓扑结构的一些性质能够在某种程度上衡量一个网络的性能如何,网络的可靠性便是其中的一个重要性能指标。分析现实世界中已有网络,如计算机网络、电网以及通讯网络等的可靠性具有重要的理论意义和应用价值。图的字典乘积利用已有规模较小的网络来构建规模较大的网络,且所得大网络的特征值完全由小网络的拓扑结构参数来刻画,并具有良好的性能,而图的欧拉回路与欧拉迹亦在此领域有着广泛的应用。乘积因子图的拓扑结构影响着字典乘积图的拓扑结构。本文主要研究字典乘积图的Euler回路问题和Euler迹问题,利用组合理论和极值构造方法,给出了两图的字典乘积图为Euler回路和Euler迹的一些充分必要条件。
人們在實踐中髮現,網絡拓撲結構的一些性質能夠在某種程度上衡量一箇網絡的性能如何,網絡的可靠性便是其中的一箇重要性能指標。分析現實世界中已有網絡,如計算機網絡、電網以及通訊網絡等的可靠性具有重要的理論意義和應用價值。圖的字典乘積利用已有規模較小的網絡來構建規模較大的網絡,且所得大網絡的特徵值完全由小網絡的拓撲結構參數來刻畫,併具有良好的性能,而圖的歐拉迴路與歐拉跡亦在此領域有著廣汎的應用。乘積因子圖的拓撲結構影響著字典乘積圖的拓撲結構。本文主要研究字典乘積圖的Euler迴路問題和Euler跡問題,利用組閤理論和極值構造方法,給齣瞭兩圖的字典乘積圖為Euler迴路和Euler跡的一些充分必要條件。
인문재실천중발현,망락탁복결구적일사성질능구재모충정도상형량일개망락적성능여하,망락적가고성편시기중적일개중요성능지표。분석현실세계중이유망락,여계산궤망락、전망이급통신망락등적가고성구유중요적이론의의화응용개치。도적자전승적이용이유규모교소적망락래구건규모교대적망락,차소득대망락적특정치완전유소망락적탁복결구삼수래각화,병구유량호적성능,이도적구랍회로여구랍적역재차영역유착엄범적응용。승적인자도적탁복결구영향착자전승적도적탁복결구。본문주요연구자전승적도적Euler회로문제화Euler적문제,이용조합이론화겁치구조방법,급출료량도적자전승적도위Euler회로화Euler적적일사충분필요조건。
It is found in practice that some properties of the network topological structure can measure the function of a network, and the network reliability is one of the most important factors. Analyzing the reliability of real networks, like the computer network, electric net-work and the communication network, owns great theoretic implication and application value. Actually, using the method of lexicographic product can easily construct a large graph from some smaller graphs, and the eigenvalues of the large graph are completely described by the parameters of the topological structure of smaller graphs. The Euler graph and Euler trail have a broad application in this field. In this paper, we mainly consider whether a lexicographic product graph, whose topological structure is affected by the factor graphs, is Euler graph or Euler trail. By using the theory of combination and the way of extreme construction, some necessary and suffcient conditions are given to ensure the lexicographic product is an Euler graph or Euler trail.