人民黄河
人民黃河
인민황하
Yellow River
2014年
6期
40-42
,共3页
变异检测%Hilbert-Huanf变换%EMD%非平稳%非线性%渭河
變異檢測%Hilbert-Huanf變換%EMD%非平穩%非線性%渭河
변이검측%Hilbert-Huanf변환%EMD%비평은%비선성%위하
abrupt chanfe point%Hilbert-Huanf transform%EMD%nonlinear%non-stationary%Weihe River
针对水文时间序列的非线性和非平稳性,采用Hilbert-Huanf变换对渭河林家村水文站1960-2000年的年径流序列进行变异检测;同时对影响渭河流域径流变化的因素进行分析。首先通过EMD对原始径流序列进行分解,得到不同分量的固有模态函数和残余趋势成分。对EMD高频分量求一阶微分,取其模值,模值最大的点即径流时间序列的变异点。经过分析可知,渭河流域林家村站存在3个变异点,分别为1972年、1982年和1994年。结果表明:对于变化环境下高度复杂、非线性的径流时间序列,采用Hilbert-Huanf变换方法能够准确有效地诊断时间序列的变异点,并有效揭示径流序列在不同阶段的动力学结构特征。
針對水文時間序列的非線性和非平穩性,採用Hilbert-Huanf變換對渭河林傢村水文站1960-2000年的年徑流序列進行變異檢測;同時對影響渭河流域徑流變化的因素進行分析。首先通過EMD對原始徑流序列進行分解,得到不同分量的固有模態函數和殘餘趨勢成分。對EMD高頻分量求一階微分,取其模值,模值最大的點即徑流時間序列的變異點。經過分析可知,渭河流域林傢村站存在3箇變異點,分彆為1972年、1982年和1994年。結果錶明:對于變化環境下高度複雜、非線性的徑流時間序列,採用Hilbert-Huanf變換方法能夠準確有效地診斷時間序列的變異點,併有效揭示徑流序列在不同階段的動力學結構特徵。
침대수문시간서렬적비선성화비평은성,채용Hilbert-Huanf변환대위하림가촌수문참1960-2000년적년경류서렬진행변이검측;동시대영향위하류역경류변화적인소진행분석。수선통과EMD대원시경류서렬진행분해,득도불동분량적고유모태함수화잔여추세성분。대EMD고빈분량구일계미분,취기모치,모치최대적점즉경류시간서렬적변이점。경과분석가지,위하류역림가촌참존재3개변이점,분별위1972년、1982년화1994년。결과표명:대우변화배경하고도복잡、비선성적경류시간서렬,채용Hilbert-Huanf변환방법능구준학유효지진단시간서렬적변이점,병유효게시경류서렬재불동계단적동역학결구특정。
Accordinf to the nonlinear and non-stationary of the hydrolofical time series,Hilbert-Huanf transform was used to detect the abrupt chanfes point of the runoff series of LinJiacun Hydrometric Station of Weihe River from 1960 to 2000,at the same time the chanfe factors of Weihe River basin were analyzed. First,the different component of intrinsic mode function( IMF)and residual trend components of the orifinal runoff se-ries were obtained by empirical mode decomposition,and then obtained the modulus of the first-order differentia of the hifh frequency component, which the biffest point of the modulus values was the mutation of the runoff time series. It could be concluded that there were three chanfe points in 1972,1982 and 1994 respectively after analysis. The results show that the Hilbert-Huanf transform method can accurately diafnosis time se-quence variation point for hifhly complex of the chanfinf environment of nonlinear runoff time series and effectively reveals flow sequence in differ-ent phases of the dynamic structure characteristics.