高等学校化学学报
高等學校化學學報
고등학교화학학보
CHEMICAL JOURNAL OF CHINESE UNIVERSITIES
2014年
6期
1166-1174
,共9页
陈景林%曹小安%刘永慧%曾嘉仪%任柯柯
陳景林%曹小安%劉永慧%曾嘉儀%任柯柯
진경림%조소안%류영혜%증가의%임가가
多维信号%催化发光%化学发光%传感器%有害气体
多維信號%催化髮光%化學髮光%傳感器%有害氣體
다유신호%최화발광%화학발광%전감기%유해기체
Multidimensional signal%Cataluminescence%Chemiluminiscence%Sensor%Toxic gas
基于2种催化敏感材料,设计了通过提取多维发光信号鉴别有害气体的催化发光(CTL)传感器.在最佳检测条件下,18种有害气体依次经过纳米 Al2 O3(或 MgO)表面进行 CTL 反应,产生的 CTL 响应信号组成其特征图谱.通过主成分分析法(PCA)鉴别了各种气体.采用线性判别分析(LDA)对浓度分别为100,300及500 mL/ m3的18种气体的识别正确率均为100%.该传感器可以同时测量气体的浓度,检出限均低于我国工作场所有害因素职业接触限值(GBZ2.1-2007),空气中几种常见的污染物共存不影响这些有害气体的检测.该传感器具有传感元件少、稳定性好、操作方便、信息丰富和识别能力强等优点,可用于发展微型实用的传感器.
基于2種催化敏感材料,設計瞭通過提取多維髮光信號鑒彆有害氣體的催化髮光(CTL)傳感器.在最佳檢測條件下,18種有害氣體依次經過納米 Al2 O3(或 MgO)錶麵進行 CTL 反應,產生的 CTL 響應信號組成其特徵圖譜.通過主成分分析法(PCA)鑒彆瞭各種氣體.採用線性判彆分析(LDA)對濃度分彆為100,300及500 mL/ m3的18種氣體的識彆正確率均為100%.該傳感器可以同時測量氣體的濃度,檢齣限均低于我國工作場所有害因素職業接觸限值(GBZ2.1-2007),空氣中幾種常見的汙染物共存不影響這些有害氣體的檢測.該傳感器具有傳感元件少、穩定性好、操作方便、信息豐富和識彆能力彊等優點,可用于髮展微型實用的傳感器.
기우2충최화민감재료,설계료통과제취다유발광신호감별유해기체적최화발광(CTL)전감기.재최가검측조건하,18충유해기체의차경과납미 Al2 O3(혹 MgO)표면진행 CTL 반응,산생적 CTL 향응신호조성기특정도보.통과주성분분석법(PCA)감별료각충기체.채용선성판별분석(LDA)대농도분별위100,300급500 mL/ m3적18충기체적식별정학솔균위100%.해전감기가이동시측량기체적농도,검출한균저우아국공작장소유해인소직업접촉한치(GBZ2.1-2007),공기중궤충상견적오염물공존불영향저사유해기체적검측.해전감기구유전감원건소、은정성호、조작방편、신식봉부화식별능력강등우점,가용우발전미형실용적전감기.
A sensor system for identifying toxic gas was fabricated by extracting multidimensional catalumines-cence(CTL) signal based on two kinds of catalytic sensitive materials. Under the optimal conditions of wave-length of 440 nm, temperature of 247 ℃ and flow rate of 240 mL/ min, eighteen kinds of volatile organic com-pounds respectively generated CTL signal I1(the first order reaction signal) when each vapor passed through nano-Al2 O3 or MgO, then residual gas from first reaction was regarded as a new reactant and continued to be oxidized on nano-Al2 O3 or MgO, generating new CTL signal I2(the second order reaction signal). Moreover, for each organic gas, eight CTL signals could be obtained by changing the direction of the gas flowing through Al2 O3-MgO, which formed the characteristic spectrum for each toxic compound. Different gases could be scientifically and objectively identified based on the principal component analysis(PCA). In addition, linear discriminant analysis(LDA) was utilized to identify eighteen kinds of organic gas in different concentration (100, 300 and 500 mL/ m3 ) with an accuracy of 100% . Furthermore, the sensor could achieve quantitative analysis with the detection limits below the occupational exposure limit of workplace(GBZ2. 1-2007). Several kinds of common pollutants in the air had no interference on the detection of chosen toxic gases. Therefore, the sensor system may be capable to develop a micro-sensor with less sensing elements, good stability, conve-nient operation, rich information and strong recognition ability in real-life application.