南方医科大学学报
南方醫科大學學報
남방의과대학학보
JOURNAL OF SOUTHERN MEDICAL UNIVERSITY
2014年
6期
813-817
,共5页
邓祯祥%王文辉%李金明
鄧禎祥%王文輝%李金明
산정상%왕문휘%리금명
卵巢癌%拷贝数变异%基因差异表达%SAM方法%GISTIC方法
卵巢癌%拷貝數變異%基因差異錶達%SAM方法%GISTIC方法
란소암%고패수변이%기인차이표체%SAM방법%GISTIC방법
ovarian cancer%copy number variation%differentially expressed genes%SAM method%GISTIC method
目的:从分子的遗传变异和表达水平综合探讨卵巢癌的发病机制,为临床诊疗提供新思路。方法从TCGA数据门户上下载大样本的高浆液性卵巢癌DNA拷贝数数据和mRNA表达数据,使用GISTIC对拷贝数变异进行分析,利用SAM软件包samr筛选差异表达基因;并利用GSEA等工具进行生物信息学分析。结果 GISTIC发现45个拷贝数扩增区域;SAM和Fisher's exact test发现拷贝数扩增区域中有40个拷贝数变异的基因能引起表达差异;GSEA富集分析发现这些拷贝数变异基因主要富集在多个有关癌症基因集的研究报告中。结论利用生物信息学方法综合分析拷贝数变异数据和基因表达数据,能充分有效地获取信息,为确定卵巢癌的早期诊断和治疗靶点提供新的思路。
目的:從分子的遺傳變異和錶達水平綜閤探討卵巢癌的髮病機製,為臨床診療提供新思路。方法從TCGA數據門戶上下載大樣本的高漿液性卵巢癌DNA拷貝數數據和mRNA錶達數據,使用GISTIC對拷貝數變異進行分析,利用SAM軟件包samr篩選差異錶達基因;併利用GSEA等工具進行生物信息學分析。結果 GISTIC髮現45箇拷貝數擴增區域;SAM和Fisher's exact test髮現拷貝數擴增區域中有40箇拷貝數變異的基因能引起錶達差異;GSEA富集分析髮現這些拷貝數變異基因主要富集在多箇有關癌癥基因集的研究報告中。結論利用生物信息學方法綜閤分析拷貝數變異數據和基因錶達數據,能充分有效地穫取信息,為確定卵巢癌的早期診斷和治療靶點提供新的思路。
목적:종분자적유전변이화표체수평종합탐토란소암적발병궤제,위림상진료제공신사로。방법종TCGA수거문호상하재대양본적고장액성란소암DNA고패수수거화mRNA표체수거,사용GISTIC대고패수변이진행분석,이용SAM연건포samr사선차이표체기인;병이용GSEA등공구진행생물신식학분석。결과 GISTIC발현45개고패수확증구역;SAM화Fisher's exact test발현고패수확증구역중유40개고패수변이적기인능인기표체차이;GSEA부집분석발현저사고패수변이기인주요부집재다개유관암증기인집적연구보고중。결론이용생물신식학방법종합분석고패수변이수거화기인표체수거,능충분유효지획취신식,위학정란소암적조기진단화치료파점제공신적사로。
Objective To explore the pathogenesis of ovarian cancer from the perspective of molecular genetic variation and changes in mRNA expression profiles. Method The data of DNA copy number and mRNA expression profiles of high-grade serious ovarian cancer were obtained from TCGA. The significant copy number variation regions were identified using the bioinformatics tool GISTIC, and the differentially expressed genes in these regions were identified using the samr package of SAM. The selected genes were subjected to bioinformatics analysis using GSEA tools. Results GISTIC analysis identified 45 significant copy number amplification regions in ovarian cancer, and SAM and Fisher's exact test found that 40 of these genes showed altered expression levels. GSEA enrichment analysis revealed that most of these genes were reported in several published studies describing genetic study of tumorigenesis. Conclusion An integrative bioinformatics study of DNA copy number variation data and microarray data can identify genes involved in tumor pathogenesis. and offer new clues for studying early diagnosis and therapeutic target of ovarian cancer.