计算机工程与应用
計算機工程與應用
계산궤공정여응용
COMPUTER ENGINEERING AND APPLICATIONS
2014年
12期
169-174
,共6页
三维人脸识别%正则化最近点%正则化仿射包%图像集匹配%最近邻分类器
三維人臉識彆%正則化最近點%正則化倣射包%圖像集匹配%最近鄰分類器
삼유인검식별%정칙화최근점%정칙화방사포%도상집필배%최근린분류기
three-dimensional face recognition%regularized nearest points%regularized affine hull%image set matching%nearest neighbor classifier
针对传统的三维人脸识别算法受光照、表情、姿态及遮掩等变化而影响识别性能的问题,提出了一种基于正则化最近点优化图像集匹配算法。将图库图像集和探针图像集建模成正则化仿射包,利用迭代器自动确定两个图像集间的正则化最近点;利用最近子空间分类器最小化正则化最近点;根据正则化最近点之间的欧氏距离及结构计算RNP集之间的距离,利用最近邻分类器完成人脸的识别。在Honda/UCSD、BU4DFE两大视频人脸数据库上的实验验证了该算法的有效性及可靠性,实验结果表明,相比其他几种较为先进的三维人脸识别算法,该算法取得了更好的识别效果,同时,大大减少了训练及测试总完成时间。
針對傳統的三維人臉識彆算法受光照、錶情、姿態及遮掩等變化而影響識彆性能的問題,提齣瞭一種基于正則化最近點優化圖像集匹配算法。將圖庫圖像集和探針圖像集建模成正則化倣射包,利用迭代器自動確定兩箇圖像集間的正則化最近點;利用最近子空間分類器最小化正則化最近點;根據正則化最近點之間的歐氏距離及結構計算RNP集之間的距離,利用最近鄰分類器完成人臉的識彆。在Honda/UCSD、BU4DFE兩大視頻人臉數據庫上的實驗驗證瞭該算法的有效性及可靠性,實驗結果錶明,相比其他幾種較為先進的三維人臉識彆算法,該算法取得瞭更好的識彆效果,同時,大大減少瞭訓練及測試總完成時間。
침대전통적삼유인검식별산법수광조、표정、자태급차엄등변화이영향식별성능적문제,제출료일충기우정칙화최근점우화도상집필배산법。장도고도상집화탐침도상집건모성정칙화방사포,이용질대기자동학정량개도상집간적정칙화최근점;이용최근자공간분류기최소화정칙화최근점;근거정칙화최근점지간적구씨거리급결구계산RNP집지간적거리,이용최근린분류기완성인검적식별。재Honda/UCSD、BU4DFE량대시빈인검수거고상적실험험증료해산법적유효성급가고성,실험결과표명,상비기타궤충교위선진적삼유인검식별산법,해산법취득료경호적식별효과,동시,대대감소료훈련급측시총완성시간。
The recognition performance of traditional three-dimensional face recognition algorithms is impacted by variation of illustration, expression, pose and occlusion seriously, for which image sets matching algorithm optimized by regularized nearest points is proposed. Gallery image sets and probe image sets are modeled as regularized affine hulls, and iterator is used to conform regularized nearest points between the two sets. Recent subspace classifier is used to minimize the regu-larized nearest points. Distance between RNP sets is calculated by Euclidean distance and structure of RNP and nearest neighbor classifier is used to finish face recognition. The effectiveness and reliability of proposed algorithm have been ver-ified by experiments on the three video face databases Honda/UCSD, BU4DFE. Experimental results show that proposed algorithm has better recognition efficiency, less training time and testing time than several advanced three-dimensional face recognition algorithms.