江西理工大学学报
江西理工大學學報
강서리공대학학보
JOURNAL OF JIANGXI UNIVERSITY OF SCIENCE AND TECHNOLOGY
2013年
3期
93-96
,共4页
连续局部鞅%倒向随机微分方程%解的存在性和唯一性
連續跼部鞅%倒嚮隨機微分方程%解的存在性和唯一性
련속국부앙%도향수궤미분방정%해적존재성화유일성
continuous local martingale%backward stochastic differential equation%existence and uniqueness of the solution
经典的倒向随机微分方程以布朗运动做为干扰源,布朗运动是一种理想化的随机模型,从而使倒向随机微分方程的应用受到了限制。文中研究了以连续局部鞅为干扰源的倒向随机微分方程,在生成元满足一种非Lipschitz条件下,通过构造一个函数列的方法,利用Lebesgue's控制收敛定理和常微分方程的比较定理,证明了其解是存在的并且是唯一的,对经典的倒向随机微分方程进行了推广。
經典的倒嚮隨機微分方程以佈朗運動做為榦擾源,佈朗運動是一種理想化的隨機模型,從而使倒嚮隨機微分方程的應用受到瞭限製。文中研究瞭以連續跼部鞅為榦擾源的倒嚮隨機微分方程,在生成元滿足一種非Lipschitz條件下,通過構造一箇函數列的方法,利用Lebesgue's控製收斂定理和常微分方程的比較定理,證明瞭其解是存在的併且是唯一的,對經典的倒嚮隨機微分方程進行瞭推廣。
경전적도향수궤미분방정이포랑운동주위간우원,포랑운동시일충이상화적수궤모형,종이사도향수궤미분방정적응용수도료한제。문중연구료이련속국부앙위간우원적도향수궤미분방정,재생성원만족일충비Lipschitz조건하,통과구조일개함수렬적방법,이용Lebesgue's공제수렴정리화상미분방정적비교정리,증명료기해시존재적병차시유일적,대경전적도향수궤미분방정진행료추엄。
The classical backward stochastic differential equations (BSDE) theory is taken the Brownian motion as the noise source, but the Brown motion is one kind of extreme idealized model, which causes limitations of the BSDE theory in application. This paper studies the backward stochastic differential equation which is taken continuous local martingale as the noise source. The authors of the paper conclude a general existence and uniqueness of the solutions under non-Lipschitz condition on the generator by adopting the construction of function sequence, Lebesgue's dominated convergence theorem and the comparison of ordinary differential equation. The authors have also conducted a substantial extension of the classical backward stochastic differential equations.