计算机应用与软件
計算機應用與軟件
계산궤응용여연건
COMPUTER APPLICATIONS AND SOFTWARE
2014年
9期
236-239,252
,共5页
权义萍%金鑫%张蕾%杨道业
權義萍%金鑫%張蕾%楊道業
권의평%금흠%장뢰%양도업
智能交通系统%车辆跟踪%均值漂移%粒子滤波%卡尔曼滤波器
智能交通繫統%車輛跟蹤%均值漂移%粒子濾波%卡爾曼濾波器
지능교통계통%차량근종%균치표이%입자려파%잡이만려파기
Intelligent transportationsystem%Vehicle tracking%Mean-shift%Particle filter%Kalman filter
在视频车辆跟踪算法中针对传统粒子滤波的非线性、非高斯性可能导致跟踪过程的不准确性,提出一种基于Mean-Shift的卡尔曼(Kalman)粒子滤波算法。该算法利用建立基于目标颜色直方图特征模型对视频车辆目标进行建模,并将其与Kalman滤波相结合进行更新;通过采用Mean Shift算法将Kalman滤波器引用到粒子滤波器当中,通过预测迭代,从而达到对车辆的运行轨迹的修正。将先验信息预测与粒子滤波相结合在保持跟踪系统整体上的非线性、非高斯性,兼顾了卡尔曼滤波局部的线性高斯特性。实验结果表明,该方法与传统粒子滤波方法相比,具有较好的实时性和较高的准确率,能够准确稳定地对目标车辆进行跟踪。
在視頻車輛跟蹤算法中針對傳統粒子濾波的非線性、非高斯性可能導緻跟蹤過程的不準確性,提齣一種基于Mean-Shift的卡爾曼(Kalman)粒子濾波算法。該算法利用建立基于目標顏色直方圖特徵模型對視頻車輛目標進行建模,併將其與Kalman濾波相結閤進行更新;通過採用Mean Shift算法將Kalman濾波器引用到粒子濾波器噹中,通過預測迭代,從而達到對車輛的運行軌跡的脩正。將先驗信息預測與粒子濾波相結閤在保持跟蹤繫統整體上的非線性、非高斯性,兼顧瞭卡爾曼濾波跼部的線性高斯特性。實驗結果錶明,該方法與傳統粒子濾波方法相比,具有較好的實時性和較高的準確率,能夠準確穩定地對目標車輛進行跟蹤。
재시빈차량근종산법중침대전통입자려파적비선성、비고사성가능도치근종과정적불준학성,제출일충기우Mean-Shift적잡이만(Kalman)입자려파산법。해산법이용건립기우목표안색직방도특정모형대시빈차량목표진행건모,병장기여Kalman려파상결합진행경신;통과채용Mean Shift산법장Kalman려파기인용도입자려파기당중,통과예측질대,종이체도대차량적운행궤적적수정。장선험신식예측여입자려파상결합재보지근종계통정체상적비선성、비고사성,겸고료잡이만려파국부적선성고사특성。실험결과표명,해방법여전통입자려파방법상비,구유교호적실시성화교고적준학솔,능구준학은정지대목표차량진행근종。
In video vehicle tracking algorithm,the nonlinear,non-Gaussian property in traditional particle filter may lead to inaccuracy intracking process.This paper puts forward a mean-shift-based Kalman particle filter algorithm to solve this problem.The algorithm models thevideo vehicle target by making use of building the target colour-based histogram feature model,and combines it with the Kalman filter forupdating;it also applies the Kalman filter to particle filter by using mean-shift algorithm,and achieves the correction of vehicles moving trackthrough prediction iteration.The method combines the priori information and the particle filtering on the overall nonlinear and non-Gaussianproperties of the tracking system,and takes into account the local linear Gaussian feature of Kalman filter as well.Experimental result showsthat this method has better real-time property and higher accuracy rate than the traditional particle filter methods,and is able to track thetarget vehicles accurately and stably.