计算机应用与软件
計算機應用與軟件
계산궤응용여연건
COMPUTER APPLICATIONS AND SOFTWARE
2014年
9期
184-186,271
,共4页
人脸识别%Fisher准则%线性判别%线性回归分类%K-近邻分类器
人臉識彆%Fisher準則%線性判彆%線性迴歸分類%K-近鄰分類器
인검식별%Fisher준칙%선성판별%선성회귀분류%K-근린분류기
Facerecognition%Fishercriterion%Lineardiscriminant%Linearregressionclassification%K-nearestneighbourclassifier
为了提高线性回归分类LRC(Linear Regression Classification)算法的鲁棒性,提出一种基于Fisher准则改进的线性判别回归分类算法。首先根据Fisher准则最大化类间重建误差与类内重建误差的比值,为LRC找到最优投影矩阵;然后利用最优投影矩阵将训练图像及测试图像投影到各个类的特征子空间;最后,计算出测试图像与各个训练图像之间的欧氏距离,并利用K-近邻分类器完成人脸的识别。在FERET和AR人脸数据库上的实验验证了本文算法的有效性。实验结果表明,相比其他回归分类算法,该算法取得了更好的识别效果。
為瞭提高線性迴歸分類LRC(Linear Regression Classification)算法的魯棒性,提齣一種基于Fisher準則改進的線性判彆迴歸分類算法。首先根據Fisher準則最大化類間重建誤差與類內重建誤差的比值,為LRC找到最優投影矩陣;然後利用最優投影矩陣將訓練圖像及測試圖像投影到各箇類的特徵子空間;最後,計算齣測試圖像與各箇訓練圖像之間的歐氏距離,併利用K-近鄰分類器完成人臉的識彆。在FERET和AR人臉數據庫上的實驗驗證瞭本文算法的有效性。實驗結果錶明,相比其他迴歸分類算法,該算法取得瞭更好的識彆效果。
위료제고선성회귀분류LRC(Linear Regression Classification)산법적로봉성,제출일충기우Fisher준칙개진적선성판별회귀분류산법。수선근거Fisher준칙최대화류간중건오차여류내중건오차적비치,위LRC조도최우투영구진;연후이용최우투영구진장훈련도상급측시도상투영도각개류적특정자공간;최후,계산출측시도상여각개훈련도상지간적구씨거리,병이용K-근린분류기완성인검적식별。재FERET화AR인검수거고상적실험험증료본문산법적유효성。실험결과표명,상비기타회귀분류산법,해산법취득료경호적식별효과。
Toimprovetherobustnessoflinearregressionclassification(LRC)algorithm,weproposealineardiscriminantregression classification algorithm which is improved based on Fisher criterion.First,it maximises the ratio of between-class reconstruction error and within-class reconstruction error according to Fisher criterion so as to find the optimal projection matrix for LRC.Then it makes use of the optimal projection matrix to project all training and testing images to subspace of every class.Finally,it computes Euclidean distances between the testing images and each training image and uses K-nearest neighbour classifier to finish face recognition.The effectiveness of the proposed algorithm is verified by experiment on FERET and AR face databases.Experimental results show that the proposed algorithm achieves better recognition effect compared with other regression classification approaches.