分析化学
分析化學
분석화학
CHINESE JOURNAL OF ANALYTICAL CHEMISTRY
2014年
10期
1518-1523
,共6页
李津蓉%戴连奎%武晓莉%周扬
李津蓉%戴連奎%武曉莉%週颺
리진용%대련규%무효리%주양
拉曼光谱%未知成分%非线性变化%定量分析
拉曼光譜%未知成分%非線性變化%定量分析
랍만광보%미지성분%비선성변화%정량분석
Raman spectrometry%Unknown components%Nonlinear%Quantitative analysis
提出了一种基于Voigt函数的未知成分拉曼光谱拟合算法,利用Voigt峰函数的叠加形式对样本中未知成分所产生的背景光谱进行拟合。在扣除背景光谱影响后,利用被测成分的光谱贡献权值与成分浓度之间建立线性关系模型。实验在3种成分不同的基础汽油中加入不同体积比例(2.5%~80.0%)的甲醇溶液,利用本方法对成分未知的基础汽油所产生的背景光谱进行拟合,扣除拟合光谱后,剩余光谱即可视为甲醇的光谱贡献。基于4个训练样本建立了甲醇光谱贡献权值与浓度之间的线性定量分析模型,模型的预测均方误差(RMSEP)为1.86%,复相关系数(R2)达到0.987。结果表明,此方法可有效解决混合物中光谱重叠问题,具有训练样本少、外推性强的优点。
提齣瞭一種基于Voigt函數的未知成分拉曼光譜擬閤算法,利用Voigt峰函數的疊加形式對樣本中未知成分所產生的揹景光譜進行擬閤。在釦除揹景光譜影響後,利用被測成分的光譜貢獻權值與成分濃度之間建立線性關繫模型。實驗在3種成分不同的基礎汽油中加入不同體積比例(2.5%~80.0%)的甲醇溶液,利用本方法對成分未知的基礎汽油所產生的揹景光譜進行擬閤,釦除擬閤光譜後,剩餘光譜即可視為甲醇的光譜貢獻。基于4箇訓練樣本建立瞭甲醇光譜貢獻權值與濃度之間的線性定量分析模型,模型的預測均方誤差(RMSEP)為1.86%,複相關繫數(R2)達到0.987。結果錶明,此方法可有效解決混閤物中光譜重疊問題,具有訓練樣本少、外推性彊的優點。
제출료일충기우Voigt함수적미지성분랍만광보의합산법,이용Voigt봉함수적첩가형식대양본중미지성분소산생적배경광보진행의합。재구제배경광보영향후,이용피측성분적광보공헌권치여성분농도지간건립선성관계모형。실험재3충성분불동적기출기유중가입불동체적비례(2.5%~80.0%)적갑순용액,이용본방법대성분미지적기출기유소산생적배경광보진행의합,구제의합광보후,잉여광보즉가시위갑순적광보공헌。기우4개훈련양본건립료갑순광보공헌권치여농도지간적선성정량분석모형,모형적예측균방오차(RMSEP)위1.86%,복상관계수(R2)체도0.987。결과표명,차방법가유효해결혼합물중광보중첩문제,구유훈련양본소、외추성강적우점。
A Raman spectrum fitting method based on Voigt function was proposed. The method can be used to fit the profile of Raman spectrum produced by unknown components in sample based on Voigt functions. In the experiment, pure methanol was added by various volume fraction ( 2. 5% -80. 0%) into three base-gasoline with different compositions. It can be applied to fit the background Raman spectrum produced by basic-gasoline comprised of unknown compositions. The remained spectrum, after deducting the fitted spectrum from the mixture spectrum, was considered as the contribution attributed only to methanol. And then a linear calibration model was built based on 4 training samples to predict the concentration of methanol. The root mean square error of prediction (RMSEP) was 1. 86% (V/V) and the correlation coefficient (R2) was 0. 987. Results show that it is an effective method to solve the problem of strong spectral overlap in mixture, and it has the advantages of high generalization and few training samples.