计算机工程与应用
計算機工程與應用
계산궤공정여응용
COMPUTER ENGINEERING AND APPLICATIONS
2014年
19期
217-221
,共5页
王金明%徐玉龙%徐志军%马振
王金明%徐玉龍%徐誌軍%馬振
왕금명%서옥룡%서지군%마진
辐射源识别%瞬态特征%特征融合%概率神经网络
輻射源識彆%瞬態特徵%特徵融閤%概率神經網絡
복사원식별%순태특정%특정융합%개솔신경망락
transmitter identification%transient characteristics%feature fusion%probabilistic neural network
在对辐射源信号进行时频分析的基础上,提出一种基于特征融合的通信辐射源个体识别方法。提取辐射源信号载频特征和瞬态幅值特征,对重采样的瞬态幅值做三次样条插值,采用最小二乘法分段对插值后的瞬态幅值进行曲线拟合,获取拟合系数作为瞬态指纹特征;最后与载频特征融合,采用遗传算法优化融合系数,融合后的特征作为辐射源指纹特征。识别分类器采用概率神经网络,对16部手持机进行识别实验。实验结果表明,该方法提取的特征能够反映通信辐射源个体的时频特性,可实现对辐射源个体的有效识别,在信噪比为20 dB时,系统识别率优于90%。
在對輻射源信號進行時頻分析的基礎上,提齣一種基于特徵融閤的通信輻射源箇體識彆方法。提取輻射源信號載頻特徵和瞬態幅值特徵,對重採樣的瞬態幅值做三次樣條插值,採用最小二乘法分段對插值後的瞬態幅值進行麯線擬閤,穫取擬閤繫數作為瞬態指紋特徵;最後與載頻特徵融閤,採用遺傳算法優化融閤繫數,融閤後的特徵作為輻射源指紋特徵。識彆分類器採用概率神經網絡,對16部手持機進行識彆實驗。實驗結果錶明,該方法提取的特徵能夠反映通信輻射源箇體的時頻特性,可實現對輻射源箇體的有效識彆,在信譟比為20 dB時,繫統識彆率優于90%。
재대복사원신호진행시빈분석적기출상,제출일충기우특정융합적통신복사원개체식별방법。제취복사원신호재빈특정화순태폭치특정,대중채양적순태폭치주삼차양조삽치,채용최소이승법분단대삽치후적순태폭치진행곡선의합,획취의합계수작위순태지문특정;최후여재빈특정융합,채용유전산법우화융합계수,융합후적특정작위복사원지문특정。식별분류기채용개솔신경망락,대16부수지궤진행식별실험。실험결과표명,해방법제취적특정능구반영통신복사원개체적시빈특성,가실현대복사원개체적유효식별,재신조비위20 dB시,계통식별솔우우90%。
Based on time-frequency analysis of the transmitters, a new transmitter individual identification method based on feature fusion is proposed. Firstly, the signal carrier frequency and transient amplitude characteristic are extracted, and then the fitting coefficients regarded as transient fingerprint characteristic are acquired by using segmented least squares curve fitting of the transient amplitude after resampling and cubic spline interpolation. Finally, the signal carrier frequency and the transient fingerprint characteristic are fused as the transmitter’s fingerprint feature vector as well as the fusion coefficients are optimized by genetic algorithms. Using probabilistic neural network classifier, the experiments are carried out based on 16 interphones. The experimental results show that the method is effectively, which is able to achieve available transmitter individual identification by mapping the signal time-frequency characteristics to the feature vectors, and the system recognition rate is above 90%with SNR of 20 dB.