计算机工程与应用
計算機工程與應用
계산궤공정여응용
COMPUTER ENGINEERING AND APPLICATIONS
2014年
19期
47-52
,共6页
孙梅兰%朱功勤%谢进
孫梅蘭%硃功勤%謝進
손매란%주공근%사진
有理插值%参数%次数类型
有理插值%參數%次數類型
유리삽치%삼수%차수류형
rational interpolation%parameter%degree type
对设定有理分式函数次数类型的有理插值问题研究,已有许多很多的结论。有理插值问题是否有解,取决于被插函数一些给定的函数值 f (xi)i=01m+n。指出分子和分母多项式次数之和为N 的有理插值问题总有解,然后从设定的有理插值函数次数类型出发,引入正整参数d,给出一种构造有理插值函数的方法。用该方法总可以构造出满足插值条件的有理分式函数,且有较大灵活性,计算量也不大。
對設定有理分式函數次數類型的有理插值問題研究,已有許多很多的結論。有理插值問題是否有解,取決于被插函數一些給定的函數值 f (xi)i=01m+n。指齣分子和分母多項式次數之和為N 的有理插值問題總有解,然後從設定的有理插值函數次數類型齣髮,引入正整參數d,給齣一種構造有理插值函數的方法。用該方法總可以構造齣滿足插值條件的有理分式函數,且有較大靈活性,計算量也不大。
대설정유리분식함수차수류형적유리삽치문제연구,이유허다흔다적결론。유리삽치문제시부유해,취결우피삽함수일사급정적함수치 f (xi)i=01m+n。지출분자화분모다항식차수지화위N 적유리삽치문제총유해,연후종설정적유리삽치함수차수류형출발,인입정정삼수d,급출일충구조유리삽치함수적방법。용해방법총가이구조출만족삽치조건적유리분식함수,차유교대령활성,계산량야불대。
There are a lot of excellent conclusions for the study of rational interpolating problem with the rational fractional function decided degree type. Whether rational interpolating problem has a solution or not depends on the given function values f (xi)i=01m+n of the being interpolated function. It is pointed out that the rational interpolating problem always has solutions when the sum of the degree of numerator polynomial and denominator Poly-nomial is“N”. Proceeding from the hypothetical degree type of rational interpolating function, the positive integer parameter“d”is introduced and a method for the determination of rational interpolating functions is presented. The method can construct rational fraction functions satisfying the interpolating conditions and it is more flexible with a small amount of calculation.