纯粹数学与应用数学
純粹數學與應用數學
순수수학여응용수학
PURE AND APPLIED MATHEMATICS
2014年
2期
166-172
,共7页
卞继承%范志强%徐加波%樊小琳
卞繼承%範誌彊%徐加波%樊小琳
변계승%범지강%서가파%번소림
持久性%种群离散模型%Lotka-Volterra系统%无穷时滞
持久性%種群離散模型%Lotka-Volterra繫統%無窮時滯
지구성%충군리산모형%Lotka-Volterra계통%무궁시체
permanence%species discrete system%Lotka-Volterra system%infinite delay
研究了一类无穷时滞两种群竞争 Lotka-Volterra 离散模型。通过构造李雅普诺夫函数,利用不等式的放缩技巧,给出了系统持久的充分条件。从而可知无穷时滞对种群的持久性没有影响。
研究瞭一類無窮時滯兩種群競爭 Lotka-Volterra 離散模型。通過構造李雅普諾伕函數,利用不等式的放縮技巧,給齣瞭繫統持久的充分條件。從而可知無窮時滯對種群的持久性沒有影響。
연구료일류무궁시체량충군경쟁 Lotka-Volterra 리산모형。통과구조리아보낙부함수,이용불등식적방축기교,급출료계통지구적충분조건。종이가지무궁시체대충군적지구성몰유영향。
In this paper, a Lotka-volterra competitive discrete system with infinity delay is investigated. By constructing Lypunov functions, an sufficient conditions for the permanence of the system has been established. From the result, we find that the infinity delay does not effect the permanence of the system.