农业工程学报
農業工程學報
농업공정학보
2013年
18期
51-59
,共9页
王光明%朱思洪%史立新%陶海龙%阮文盛
王光明%硃思洪%史立新%陶海龍%阮文盛
왕광명%주사홍%사립신%도해룡%원문성
拖拉机%离合器%优化%换挡%无级变速
拖拉機%離閤器%優化%換擋%無級變速
타랍궤%리합기%우화%환당%무급변속
tractor%power shift%continuously variable transmission%clutch%shift quality
为了提高无级变速拖拉机的换段质量,该文对所开发的一种新型液压机械无级变速箱的换段过程进行了试验研究。离合器充油特性试验中,通过改变离合器控制油路参数,获得主油路压力与充油流量对换段时间的影响规律;单因素加载试验中,通过单独改变发动机转速、主油路压力、充油流量、负载转矩,获得各因素单独作用时对换段质量的影响规律;多因素组合加载试验中,设计了3水平4因素组合试验方案,对多个因素综合作用时的变速箱换段质量问题进行了研究;时序优化试验中,通过控制器改变离合器动作时机,获得最佳的换段时序。试验结果表明:离合器主油路压力、充油流量可通过影响换段时间而间接影响到换段质量;重叠时序换段会引起油压陷阱,证明了重叠换段的安全性和可行性;单因素作用时,换段质量与离合器压力、流量正相关,与负载转矩负相关,与发动机转速无关;多因素共同作用时,换段质量的主次影响因素依次为充油流量、负载转矩、主油路压力、发动机转速;此外,采用重叠时序换段可显著改善换段质量。根据试验结果得出,为使该变速箱获得最佳的换段质量,其离合器主油路压力应取值4MPa,充油流量取值5L/min,重叠时序取值120ms。该结论为换段控制策略的制定提供了重要参考。
為瞭提高無級變速拖拉機的換段質量,該文對所開髮的一種新型液壓機械無級變速箱的換段過程進行瞭試驗研究。離閤器充油特性試驗中,通過改變離閤器控製油路參數,穫得主油路壓力與充油流量對換段時間的影響規律;單因素加載試驗中,通過單獨改變髮動機轉速、主油路壓力、充油流量、負載轉矩,穫得各因素單獨作用時對換段質量的影響規律;多因素組閤加載試驗中,設計瞭3水平4因素組閤試驗方案,對多箇因素綜閤作用時的變速箱換段質量問題進行瞭研究;時序優化試驗中,通過控製器改變離閤器動作時機,穫得最佳的換段時序。試驗結果錶明:離閤器主油路壓力、充油流量可通過影響換段時間而間接影響到換段質量;重疊時序換段會引起油壓陷阱,證明瞭重疊換段的安全性和可行性;單因素作用時,換段質量與離閤器壓力、流量正相關,與負載轉矩負相關,與髮動機轉速無關;多因素共同作用時,換段質量的主次影響因素依次為充油流量、負載轉矩、主油路壓力、髮動機轉速;此外,採用重疊時序換段可顯著改善換段質量。根據試驗結果得齣,為使該變速箱穫得最佳的換段質量,其離閤器主油路壓力應取值4MPa,充油流量取值5L/min,重疊時序取值120ms。該結論為換段控製策略的製定提供瞭重要參攷。
위료제고무급변속타랍궤적환단질량,해문대소개발적일충신형액압궤계무급변속상적환단과정진행료시험연구。리합기충유특성시험중,통과개변리합기공제유로삼수,획득주유로압력여충유류량대환단시간적영향규률;단인소가재시험중,통과단독개변발동궤전속、주유로압력、충유류량、부재전구,획득각인소단독작용시대환단질량적영향규률;다인소조합가재시험중,설계료3수평4인소조합시험방안,대다개인소종합작용시적변속상환단질량문제진행료연구;시서우화시험중,통과공제기개변리합기동작시궤,획득최가적환단시서。시험결과표명:리합기주유로압력、충유류량가통과영향환단시간이간접영향도환단질량;중첩시서환단회인기유압함정,증명료중첩환단적안전성화가행성;단인소작용시,환단질량여리합기압력、류량정상관,여부재전구부상관,여발동궤전속무관;다인소공동작용시,환단질량적주차영향인소의차위충유류량、부재전구、주유로압력、발동궤전속;차외,채용중첩시서환단가현저개선환단질량。근거시험결과득출,위사해변속상획득최가적환단질량,기리합기주유로압력응취치4MPa,충유류량취치5L/min,중첩시서취치120ms。해결론위환단공제책략적제정제공료중요삼고。
In order to improve the power shift quality of agricultural tractors with continuously variable transmission, the power shift process of a new kind of tractor hydraulic mechanical CVT was studied. Based on bench tests of the power-shift of the CVT and a homemade control system, we conducted a suite of experiments on the oil charge of the clutches, transmission load with single and multiple factors, and shift timing optimization. During the experiments on the oil charge of the clutches, the engine was turned off, and the relationships between the shift time and the oil pressure of the hydraulic system and the flow rate of the clutch were revealed. During the load experiments with single and multiple factors, the relationship between the shift quality and the rotation speed of the engine, the oil pressure of the hydraulic system, the flow rate of the clutch, and the load torque were revealed. During the experiments on shift timing optimization, the optimized connection time of the clutch was studied. The results show that the shift quality is influenced by the oil pressure of the hydraulic system and the flow rate of the clutch, which would change the shift time. The pressure changing rule of the clutches during the shift process was revealed and proved the overlapping shift to be safe and feasible. The shift experiments with a single factor show that the shift quality is positively related to the flow rate of the clutch and the oil pressure of the hydraulic system, but inversely related to the load torque. There is no significant relation between the shift quality and the engine speed. The shift experiments with multiple factors show that the significance of the factors affecting speed drop and speed impact are the flow rate of the clutch, the load torque, the oil pressure of the hydraulic system, and the engine speed. The significance of the factors affecting the dynamic load are the load torque, the flow rate of the clutch (which is in parallel with the oil pressure of the hydraulic system), and the engine speed. In addition, the overlapping shift would evidently improve the shift quality. According to the experiment results, the optimal flow rate of the clutch is 5 L per minute, the optimal oil pressure of the hydraulic system is 4 Mpa, and the optimal shift timing is 120 ms, i.e. one clutch should be energized 120 ms ahead of the other. The conclusion provides an important reference for the design of transmission control units.