计算机工程与应用
計算機工程與應用
계산궤공정여응용
COMPUTER ENGINEERING AND APPLICATIONS
2013年
18期
180-186
,共7页
喻德生%徐迎博%曾接贤
喻德生%徐迎博%曾接賢
유덕생%서영박%증접현
类四次三角Bézier曲线%形状参数%扩展%光滑拼接
類四次三角Bézier麯線%形狀參數%擴展%光滑拼接
류사차삼각Bézier곡선%형상삼수%확전%광활병접
quasi-quartic trigonometric polynomial Bézier curves%shape parameter%extension%continuously joining
给出了一类双参数的类四次三角Bézier曲线及其扩展曲线的定义,得到了该类曲线及其扩展曲线的性质,给出了两段双参数的类四次三角Bézier曲线G1(C1)、G2(C2)及两段扩展曲线G1(C1)、G2(C2)光滑拼接的充要条件,并讨论了这两类曲线的应用。算例表明,该类曲线及其扩展曲线在曲线造型,特别是在非对称图形的造型中,具有很强的描述能力。
給齣瞭一類雙參數的類四次三角Bézier麯線及其擴展麯線的定義,得到瞭該類麯線及其擴展麯線的性質,給齣瞭兩段雙參數的類四次三角Bézier麯線G1(C1)、G2(C2)及兩段擴展麯線G1(C1)、G2(C2)光滑拼接的充要條件,併討論瞭這兩類麯線的應用。算例錶明,該類麯線及其擴展麯線在麯線造型,特彆是在非對稱圖形的造型中,具有很彊的描述能力。
급출료일류쌍삼수적류사차삼각Bézier곡선급기확전곡선적정의,득도료해류곡선급기확전곡선적성질,급출료량단쌍삼수적류사차삼각Bézier곡선G1(C1)、G2(C2)급량단확전곡선G1(C1)、G2(C2)광활병접적충요조건,병토론료저량류곡선적응용。산례표명,해류곡선급기확전곡선재곡선조형,특별시재비대칭도형적조형중,구유흔강적묘술능력。
A class of quasi-quartic trigonometric polynomial Bézier curves with double parameters and its extension are defined. The properties of the class of the curves and its extension are obtained, and the necessary and sufficient conditions for G1(C1)、G2(C2) continuously joining with two segments of quasi-quartic trigonometric polynomial Bézier curves and two extensions are given. The applications of them are discussed. Experimental examples show that the class of the curves and its extensions have stronger abilities in curve designing, especially in designing of non-symmetry figures.