农业工程学报
農業工程學報
농업공정학보
2013年
19期
105-111
,共7页
土壤%水%模型%持水能力%进气值%Hydrus-1D模型
土壤%水%模型%持水能力%進氣值%Hydrus-1D模型
토양%수%모형%지수능력%진기치%Hydrus-1D모형
soils%water%models%water capacity%air entry value (AVE)%Hydrus-1D
为了了解不同类型层状土柱持水能力,利用砂土和砂黄土2种土壤,设置3种不同厚度分层土柱(11.25、22.5、45 cm)和2种匀质对照土柱,测定了土柱自初始饱和条件下的排水过程;同时利用匀质土柱测定结果标定2种土壤水力参数,通过Hydrus-1D模型对不同类型层状土柱排水过程进行模拟分析,获得了不同类型层状土柱的田间持水量。结果表明,层状土柱持水能力随着分层厚度的减小而增加,当分层厚度减小到一定程度时土柱持水能力不再随着分层厚度的减小而增加,该临界厚度取决于下层粗质土壤对上层细质土的吸力与上层细质土壤进气吸力之间的相对大小。本试验所用2种土壤分层临界厚度大约在5 cm左右;土柱失水主要来自下层较粗质地土壤,由饱和时的0.385 cm3/cm3减小到0.04 cm3/cm3。上层细质土壤含水量随着分层厚度的减小而增加。研究结果可为干旱半干旱地区矿区恢复和污染物填埋提供理论指导。
為瞭瞭解不同類型層狀土柱持水能力,利用砂土和砂黃土2種土壤,設置3種不同厚度分層土柱(11.25、22.5、45 cm)和2種勻質對照土柱,測定瞭土柱自初始飽和條件下的排水過程;同時利用勻質土柱測定結果標定2種土壤水力參數,通過Hydrus-1D模型對不同類型層狀土柱排水過程進行模擬分析,穫得瞭不同類型層狀土柱的田間持水量。結果錶明,層狀土柱持水能力隨著分層厚度的減小而增加,噹分層厚度減小到一定程度時土柱持水能力不再隨著分層厚度的減小而增加,該臨界厚度取決于下層粗質土壤對上層細質土的吸力與上層細質土壤進氣吸力之間的相對大小。本試驗所用2種土壤分層臨界厚度大約在5 cm左右;土柱失水主要來自下層較粗質地土壤,由飽和時的0.385 cm3/cm3減小到0.04 cm3/cm3。上層細質土壤含水量隨著分層厚度的減小而增加。研究結果可為榦旱半榦旱地區礦區恢複和汙染物填埋提供理論指導。
위료료해불동류형층상토주지수능력,이용사토화사황토2충토양,설치3충불동후도분층토주(11.25、22.5、45 cm)화2충균질대조토주,측정료토주자초시포화조건하적배수과정;동시이용균질토주측정결과표정2충토양수력삼수,통과Hydrus-1D모형대불동류형층상토주배수과정진행모의분석,획득료불동류형층상토주적전간지수량。결과표명,층상토주지수능력수착분층후도적감소이증가,당분층후도감소도일정정도시토주지수능력불재수착분층후도적감소이증가,해림계후도취결우하층조질토양대상층세질토적흡력여상층세질토양진기흡력지간적상대대소。본시험소용2충토양분층림계후도대약재5 cm좌우;토주실수주요래자하층교조질지토양,유포화시적0.385 cm3/cm3감소도0.04 cm3/cm3。상층세질토양함수량수착분층후도적감소이증가。연구결과가위간한반간한지구광구회복화오염물전매제공이론지도。
The impact of textural layering on water retention capacity was evaluated through three different layer thicknesses soils (11.25, 22.5 and 45 cm), and two homogeneous soils (sand and sandy loess) as control in 90 cm long columns. The soil columns were completely saturated and then drained with a positive pressure of 2 cm at the bottoms of the soil columns. The changes of water storage with time were measured by weighing the columns and by measuring the soil water content profiles using TDR probes, respectively, at 1, 5, 24, 48, 72 and 96 hours of drainage. The hydraulic properties of the sand and sandy loess were measured in the laboratory and also optimized using numerical simulations for the two homogeneous soil columns. Comparing the measured hydraulic parameters with the optimized ones, we found that the optimized parameters could decrease the maximum relative error from 19% to 9%. These optimized properties were then used to simulate the drainage process of deep profiles in more typical field conditions. The results showed that:1) The laboratory observations and simulations all confirm that the amount of water retention decreases as the thickness of the layers increased. When the combined pressure caused by the suction of the underlying coarser layer plus the hydrostatic pressure within the finer sandy loess layer exceeds the air entry value (AVE) of the finer sandy loess, the amount of the water retention capacity does not increase with decreasing thickness of layer in the textural soil. In this study, we found the minimum thickness of the fine sandy loess is about 5 cm;2) The water content within the finer textural layers decreased only slightly from saturation, with almost all of the water loss occurring from the coarser textural layers. This phenomenon can be found in the water content profile. The water content profiles in all layered soil columns showed distinct breaks at the layer interfaces, and the water content of coarser layers decreased from saturated to only 0.04 cm 3/cm3. Though the water content of finer sandy loess layers changed little, it also can be found that the water content of finer soil increased with the decreasing thickness. The results of this research can provide some recommendations for mine reclamation in arid and semiarid regions.