军械工程学院学报
軍械工程學院學報
군계공정학원학보
JOURNAL OF ORDNANCE ENGINEERING COLLEGE
2013年
5期
35-39
,共5页
韩德来%陈鹏%蔡强富%刘美全
韓德來%陳鵬%蔡彊富%劉美全
한덕래%진붕%채강부%류미전
电磁超声%非负矩阵分解%特征提取%特征选择%支持向量机
電磁超聲%非負矩陣分解%特徵提取%特徵選擇%支持嚮量機
전자초성%비부구진분해%특정제취%특정선택%지지향량궤
electromagnetic acoustic%nonnegative matrix factorization%feature extraction%featureselection%support vector machine
针对孤立脉冲群电磁超声系统信号特征容易被噪声淹没的问题,提出基于改进的非负矩阵分解(INMF)优选特征的支持向量机(SVM)方法。首先,用3种不同的方法提取高维特征;其次,用NMF方法实现特征降维,并保证降维结果的唯一性,避免对特征的直接选择;最后,应用支持向量机方法对降维特征进行分类。对孤立脉冲群电磁超声系统采集的4种信号特征进行提取、选择和分类,实验结果表明:INMF方法能有效提取微弱信号的特征,减少运算量,提高电磁超声系统特征采集的准确率。
針對孤立脈遲群電磁超聲繫統信號特徵容易被譟聲淹沒的問題,提齣基于改進的非負矩陣分解(INMF)優選特徵的支持嚮量機(SVM)方法。首先,用3種不同的方法提取高維特徵;其次,用NMF方法實現特徵降維,併保證降維結果的唯一性,避免對特徵的直接選擇;最後,應用支持嚮量機方法對降維特徵進行分類。對孤立脈遲群電磁超聲繫統採集的4種信號特徵進行提取、選擇和分類,實驗結果錶明:INMF方法能有效提取微弱信號的特徵,減少運算量,提高電磁超聲繫統特徵採集的準確率。
침대고립맥충군전자초성계통신호특정용역피조성엄몰적문제,제출기우개진적비부구진분해(INMF)우선특정적지지향량궤(SVM)방법。수선,용3충불동적방법제취고유특정;기차,용NMF방법실현특정강유,병보증강유결과적유일성,피면대특정적직접선택;최후,응용지지향량궤방법대강유특정진행분류。대고립맥충군전자초성계통채집적4충신호특정진행제취、선택화분류,실험결과표명:INMF방법능유효제취미약신호적특정,감소운산량,제고전자초성계통특정채집적준학솔。
A characteristics optimized method based on improved non-negative matrix factorization(NMF)and support vector machine (SVM)is proposed to solve the problem that the characteris-tic in the signal of isolated impulse cluster electromagnetic acoustic system is easily overwhelmedby the noise.First,high-dimensional feature is extracted in three ways;second,an improved NMFmethod achieves dimension reduction and ensures the uniqueness results in dimensionality reduc-tion,avoiding the direct selection of the characteristics;finally,the SVM methods is used forcharacteristics identification and feature classification.Results show that the INMF method ex-tracts the weak signal characteristics effectively and improves the feature extraction accuracy ratein electromagnetic acoustic system.