兵器材料科学与工程
兵器材料科學與工程
병기재료과학여공정
Ordnance Material Science and Engineering
2013年
6期
68-71
,共4页
扩散%过渡层%拉伸%应力-应变
擴散%過渡層%拉伸%應力-應變
확산%과도층%랍신%응력-응변
diffusion%transition layer%tensile%stress-strain
采用分子动力学方法研究了纳米铜-镍异质金属之间的高温扩散过程,并对退火后得到的扩散模型进行拉伸模拟。结果表明:在相同升温、加压和退火条件下,保温时间越长,扩散模型的过渡层厚度越大,拉伸强度越小;当保温时间为600 ps,扩散模型的拉伸强度为11.62 GPa,达到理想接触铜-镍模型拉伸强度的76%。
採用分子動力學方法研究瞭納米銅-鎳異質金屬之間的高溫擴散過程,併對退火後得到的擴散模型進行拉伸模擬。結果錶明:在相同升溫、加壓和退火條件下,保溫時間越長,擴散模型的過渡層厚度越大,拉伸彊度越小;噹保溫時間為600 ps,擴散模型的拉伸彊度為11.62 GPa,達到理想接觸銅-鎳模型拉伸彊度的76%。
채용분자동역학방법연구료납미동-얼이질금속지간적고온확산과정,병대퇴화후득도적확산모형진행랍신모의。결과표명:재상동승온、가압화퇴화조건하,보온시간월장,확산모형적과도층후도월대,랍신강도월소;당보온시간위600 ps,확산모형적랍신강도위11.62 GPa,체도이상접촉동-얼모형랍신강도적76%。
The high-temperature diffusion process of nano-Cu-Ni interface was studied using molecular dynamics simulations,and diffusion-bonded Cu-Ni model was subjected to tensile loading. The results indicate that the transition layer thickness of the diffusion model increases and its tensile strength decreases with increasing the holding time under the same conditions of heating,pressure and annealing. When the holding time is up to 600 ps,tensile strength of the diffusion model is 11.62 GPa, reaching 76%of the ideal Cu-Ni contact strength.