软件
軟件
연건
SOFT WARE
2013年
10期
49-54
,共6页
李河欣%张勖%董跃武%曹龙江%勾学荣
李河訢%張勗%董躍武%曹龍江%勾學榮
리하흔%장욱%동약무%조룡강%구학영
信息物理系统%数据融合%加权贝叶斯理论%属性相关%可靠预测
信息物理繫統%數據融閤%加權貝葉斯理論%屬性相關%可靠預測
신식물리계통%수거융합%가권패협사이론%속성상관%가고예측
Cyber-Physic System%Data Aggregation%Weighted Bayesian Theory%Attribute Correlation%Reliable Prediction
信息物理系统CPS(Cyber-Physic System)是融合了传感器网络、通信系统、计算机网络等多种网络和技术的新型复杂系统。其结构复杂性决定了网络中会产生大量数据,如何减小网络负载,提高能量利用率是CPS面临的一项重要挑战。数据融合通过将信息综合化,减少在网络内传输的数据量,能够有效地降低网络负载,从而达到节省能量开支的效果。同时通过将各类原始数据融合成具有意义的概括数据,大大提高了网络的数据分析和决策能力。本文将数据融合技术应用于信息物理系统,基于数据的时空和属性特点,提出了同时包含时间融合、空间融合、属性融合的STAC(Spatial-Temporal-Attribute Correlation)算法。该算法基于时空相关性对原始数据进行首次融合,进而在加权贝叶斯理论的基础上,根据不同类型数据的属性相关性对数据进行二次融合,形成有综合意义的概括数据。基于NS2平台的仿真结果证明,该算法能够有效减少数据包传输量,并且能够准确预测CPS网络事件类型,实现CPS的智能闭环控制。
信息物理繫統CPS(Cyber-Physic System)是融閤瞭傳感器網絡、通信繫統、計算機網絡等多種網絡和技術的新型複雜繫統。其結構複雜性決定瞭網絡中會產生大量數據,如何減小網絡負載,提高能量利用率是CPS麵臨的一項重要挑戰。數據融閤通過將信息綜閤化,減少在網絡內傳輸的數據量,能夠有效地降低網絡負載,從而達到節省能量開支的效果。同時通過將各類原始數據融閤成具有意義的概括數據,大大提高瞭網絡的數據分析和決策能力。本文將數據融閤技術應用于信息物理繫統,基于數據的時空和屬性特點,提齣瞭同時包含時間融閤、空間融閤、屬性融閤的STAC(Spatial-Temporal-Attribute Correlation)算法。該算法基于時空相關性對原始數據進行首次融閤,進而在加權貝葉斯理論的基礎上,根據不同類型數據的屬性相關性對數據進行二次融閤,形成有綜閤意義的概括數據。基于NS2平檯的倣真結果證明,該算法能夠有效減少數據包傳輸量,併且能夠準確預測CPS網絡事件類型,實現CPS的智能閉環控製。
신식물리계통CPS(Cyber-Physic System)시융합료전감기망락、통신계통、계산궤망락등다충망락화기술적신형복잡계통。기결구복잡성결정료망락중회산생대량수거,여하감소망락부재,제고능량이용솔시CPS면림적일항중요도전。수거융합통과장신식종합화,감소재망락내전수적수거량,능구유효지강저망락부재,종이체도절성능량개지적효과。동시통과장각류원시수거융합성구유의의적개괄수거,대대제고료망락적수거분석화결책능력。본문장수거융합기술응용우신식물리계통,기우수거적시공화속성특점,제출료동시포함시간융합、공간융합、속성융합적STAC(Spatial-Temporal-Attribute Correlation)산법。해산법기우시공상관성대원시수거진행수차융합,진이재가권패협사이론적기출상,근거불동류형수거적속성상관성대수거진행이차융합,형성유종합의의적개괄수거。기우NS2평태적방진결과증명,해산법능구유효감소수거포전수량,병차능구준학예측CPS망락사건류형,실현CPS적지능폐배공제。
Cyber-Physic System is a new type of complex system which combines sensor network, communication system, computer network etc. The complicated structure of CPS will result in producing large amounts of data, so how to reduce the network load and to improve the energy utilization is a challenge. Data aggregation is a promising technique which can reduce the amount of data transmitted in network by converting the raw data to summary data, leading to the purpose of saving energy. Meanwhile, since the aggregated data contains more comprehensive information, it can greatly improve the analysis and decision-making ability in the network. In this paper, we ifrst applied data aggregation technology to the context of CPS, and proposed a new algorithm called STAC (Spatial-Temporal-Attribute Correlation) algorithm, combining spatial aggregation, temporal aggregation, and the most important attribute aggregation. STAC turn the large amounts of raw data into GI (general information) based on the spatial-temporal correlation at ifrst. Then according to the weighted Bayesian theory, the algorithm generated second aggregated data CI (comprehensive information) based attribute correlation of different types of data. The simulation results on NS2 show that the algorithm can effectively reduce packet transmission capacity, predict network event type accurately, and achieve intelligent closed-loop control in CPS.