电脑知识与技术
電腦知識與技術
전뇌지식여기술
COMPUTER KNOWLEDGE AND TECHNOLOGY
2013年
33期
7575-7576,7580
,共3页
人工蜂群算法%变异%收敛速度
人工蜂群算法%變異%收斂速度
인공봉군산법%변이%수렴속도
artificial bee colony%variation%convergence rate
针对人工蜂群算法存在的收敛速度慢、易陷入局部最优的缺点,利用变异方法来取代传统的选择模型。对4个标准测试函数的仿真表明本文提出的随机选择算法不仅能延长算法的收敛速度还能在算法的精度上有着明显的提高,改进后的性能明显优于人工蜂群算法。
針對人工蜂群算法存在的收斂速度慢、易陷入跼部最優的缺點,利用變異方法來取代傳統的選擇模型。對4箇標準測試函數的倣真錶明本文提齣的隨機選擇算法不僅能延長算法的收斂速度還能在算法的精度上有著明顯的提高,改進後的性能明顯優于人工蜂群算法。
침대인공봉군산법존재적수렴속도만、역함입국부최우적결점,이용변이방법래취대전통적선택모형。대4개표준측시함수적방진표명본문제출적수궤선택산법불부능연장산법적수렴속도환능재산법적정도상유착명현적제고,개진후적성능명현우우인공봉군산법。
In view of the convergence speed of the artificial bee colony algorithm is slow, easy to fall into local optimum,using variation method to replace the traditional choice model. The simulation on 4 benchmark functions show that the random selec-tion algorithm is proposed in this paper can not only extend the algorithm greatly the convergence speed can be significantly im-proved in the accuracy of the algorithm, the improved performance is obviously better than the existing artificial bee colony algo-rithm.