长春理工大学学报(自然科学版)
長春理工大學學報(自然科學版)
장춘리공대학학보(자연과학판)
JOURNAL OF CHANGCHUN UNIVERSITY OF SCIENCE AND TECHNOLOGY(NATURAL SCIENCE EDITION)
2014年
2期
62-67
,共6页
模糊C均值%遗传算法%空间邻域信息%图像分割%噪声
模糊C均值%遺傳算法%空間鄰域信息%圖像分割%譟聲
모호C균치%유전산법%공간린역신식%도상분할%조성
Fuzzy C-Means%genetic algorithm%spatial neighboring information%image segmentation%noise
模糊C均值(Fuzzy C-Means,FCM)聚类算法已广泛应用于图像分割领域,其本质是一种局部搜索算法,采用迭代爬山算法寻找最优解,对初始聚类中心敏感,很容易陷入局部极优值,且没有考虑图像的空间邻域信息,对噪声敏感。本文提出了改进的基于遗传模糊聚类的图像分割算法,利用遗传算法的全局寻优能力来克服FCM算法容易陷入局部极优值问题;并在FCM算法的目标函数中添加空间邻域信息来约束隶属度函数从而提高对噪声的鲁棒性,使分割更加符合期望。实验结果表明本文算法的有效性,图像分割时具有较强的抗噪能力和较好的分割效果。
模糊C均值(Fuzzy C-Means,FCM)聚類算法已廣汎應用于圖像分割領域,其本質是一種跼部搜索算法,採用迭代爬山算法尋找最優解,對初始聚類中心敏感,很容易陷入跼部極優值,且沒有攷慮圖像的空間鄰域信息,對譟聲敏感。本文提齣瞭改進的基于遺傳模糊聚類的圖像分割算法,利用遺傳算法的全跼尋優能力來剋服FCM算法容易陷入跼部極優值問題;併在FCM算法的目標函數中添加空間鄰域信息來約束隸屬度函數從而提高對譟聲的魯棒性,使分割更加符閤期望。實驗結果錶明本文算法的有效性,圖像分割時具有較彊的抗譟能力和較好的分割效果。
모호C균치(Fuzzy C-Means,FCM)취류산법이엄범응용우도상분할영역,기본질시일충국부수색산법,채용질대파산산법심조최우해,대초시취류중심민감,흔용역함입국부겁우치,차몰유고필도상적공간린역신식,대조성민감。본문제출료개진적기우유전모호취류적도상분할산법,이용유전산법적전국심우능력래극복FCM산법용역함입국부겁우치문제;병재FCM산법적목표함수중첨가공간린역신식래약속대속도함수종이제고대조성적로봉성,사분할경가부합기망。실험결과표명본문산법적유효성,도상분할시구유교강적항조능력화교호적분할효과。
Fuzzy C-Means (FCM) clustering algorithm has been widely used in the field of image segmentation, be-cause its nature is a local search algorithm. As using iterative climbing to find the optimal solution,so it is sensitive to initial cluster center and easy to fall into local excellent value. Without considering the image spatial information, it is sensitive to noise. Thus,an improved image segmentation algorithm based on genetic Fuzzy C-Means clustering is pro-posed, using genetic algorithm’s global optimization ability to overcome the problem of falling into local optimal value. It improve the robustness of image noise through adding the neighborhood spatial information to FCM objective function to constrain the membership function,so that the results of segmentation are more in line with expectation. Experimen-tal results indicate that the effectiveness of this algorithm can have a strong anti-noise ability and get better segmenta-tion effectiveness.