应用数学与计算数学学报
應用數學與計算數學學報
응용수학여계산수학학보
COMMUNICATION ON APPLIED MATHEMATICS AND COMPUTATION
2012年
4期
456-464
,共9页
郭谦%解雯雯%陶雪银%朱颖
郭謙%解雯雯%陶雪銀%硃穎
곽겸%해문문%도설은%주영
随机时滞微分方程%Milstein格式%分裂步长%强收敛
隨機時滯微分方程%Milstein格式%分裂步長%彊收斂
수궤시체미분방정%Milstein격식%분렬보장%강수렴
stochastic delay differential equation%Milstein scheme%split-step%strong convergence
给出一个新的求解线性随机时滞微分方程的显式分裂步长Milstein格式. 运用Ito-Taylor展开式证明该格式相对于已有的求解随机时滞微分方程的分裂步长方法而言具有更好的收敛性. 数值实验验证了理论分析的正确性.
給齣一箇新的求解線性隨機時滯微分方程的顯式分裂步長Milstein格式. 運用Ito-Taylor展開式證明該格式相對于已有的求解隨機時滯微分方程的分裂步長方法而言具有更好的收斂性. 數值實驗驗證瞭理論分析的正確性.
급출일개신적구해선성수궤시체미분방정적현식분렬보장Milstein격식. 운용Ito-Taylor전개식증명해격식상대우이유적구해수궤시체미분방정적분렬보장방법이언구유경호적수렴성. 수치실험험증료이론분석적정학성.
A new explicit split-step Milstein method for solving linear Ito stochastic differential equations (SDEs) with a constant time delay is introduced. The Ito-Taylor expansion is employed to prove the strong convergence, which inproves the convergence results of known split-step methods for stochastic delay differential equations (SDDEs). Numerical experiments confirm the theoretical results.