应用数学与计算数学学报
應用數學與計算數學學報
응용수학여계산수학학보
COMMUNICATION ON APPLIED MATHEMATICS AND COMPUTATION
2012年
4期
423-432
,共10页
奇摄动%非线性方程%非线性边值条件
奇攝動%非線性方程%非線性邊值條件
기섭동%비선성방정%비선성변치조건
singular perturbation%nonlinear equation%nonlinear boundary value condition
研究了一类具非线性边值条件的三阶非线性方程的奇摄动问题, 选用非常规的渐近序列和合成展开法构造形式渐近解, 并用微分不等式理论证明了所得渐近解的一致有效性.
研究瞭一類具非線性邊值條件的三階非線性方程的奇攝動問題, 選用非常規的漸近序列和閤成展開法構造形式漸近解, 併用微分不等式理論證明瞭所得漸近解的一緻有效性.
연구료일류구비선성변치조건적삼계비선성방정적기섭동문제, 선용비상규적점근서렬화합성전개법구조형식점근해, 병용미분불등식이론증명료소득점근해적일치유효성.
The singularly perturbed problem for the third-order nonlinear equation with nonlinear boundary value conditions is considered. Using the unconventional asymptotic sequence and the method of the composite expansion, the formal asymptotic expansion of the solution to the problem is constructed. By using the theory of differential inequalities, the existence of the solution and the uniform validity of the expansion are proved.