汽车安全与节能学报
汽車安全與節能學報
기차안전여절능학보
JOURNAL OF AUTOMOTIVE SAFETY AND ENGERGY
2012年
4期
319-325
,共7页
王秋成%刘卫国%葛东东%赵福全%李芳
王鞦成%劉衛國%葛東東%趙福全%李芳
왕추성%류위국%갈동동%조복전%리방
电动汽车%吸能梁%耐撞性%轻量化
電動汽車%吸能樑%耐撞性%輕量化
전동기차%흡능량%내당성%경양화
electric car%energy-absorbing beam%crashworthiness%light mass
电动车续航里程过短是影响推广应用的主要瓶颈因素之一,而电动汽车车身结构的轻量化是提高续航里程的有效途径。该文提出了两款新型梁--直形收缩梁和锥形收缩梁,对某款电动汽车原吸能部件,进行轻量化设计。建立了电动汽车正面碰撞结构模型,运用Hypermesh和LS—DYNA软件,对新型吸能梁和原吸能梁进行低速(16km/h)碰撞和高速(50km/h)碰撞模拟,研究了其碰撞能量吸收、刚性墙撞击力、车身加速度等碰撞行为。仿真计算结果表明:新型直形收缩梁在高速碰撞时吸能提高了18.0%,同时吸能部件的质量减轻了23.6%,兼顾了电动汽车零部件的轻量化和耐撞性。
電動車續航裏程過短是影響推廣應用的主要瓶頸因素之一,而電動汽車車身結構的輕量化是提高續航裏程的有效途徑。該文提齣瞭兩款新型樑--直形收縮樑和錐形收縮樑,對某款電動汽車原吸能部件,進行輕量化設計。建立瞭電動汽車正麵踫撞結構模型,運用Hypermesh和LS—DYNA軟件,對新型吸能樑和原吸能樑進行低速(16km/h)踫撞和高速(50km/h)踫撞模擬,研究瞭其踫撞能量吸收、剛性牆撞擊力、車身加速度等踫撞行為。倣真計算結果錶明:新型直形收縮樑在高速踫撞時吸能提高瞭18.0%,同時吸能部件的質量減輕瞭23.6%,兼顧瞭電動汽車零部件的輕量化和耐撞性。
전동차속항리정과단시영향추엄응용적주요병경인소지일,이전동기차차신결구적경양화시제고속항리정적유효도경。해문제출료량관신형량--직형수축량화추형수축량,대모관전동기차원흡능부건,진행경양화설계。건립료전동기차정면팽당결구모형,운용Hypermesh화LS—DYNA연건,대신형흡능량화원흡능량진행저속(16km/h)팽당화고속(50km/h)팽당모의,연구료기팽당능량흡수、강성장당격력、차신가속도등팽당행위。방진계산결과표명:신형직형수축량재고속팽당시흡능제고료18.0%,동시흡능부건적질량감경료23.6%,겸고료전동기차령부건적경양화화내당성。
The insufficient mileage is one of the major bottleneck factors which affect the promotion and application of electric cars. To reduce the electric vehicle body mass is an effective way to improve the mileage of an electric vehicle. Two kinds of contraction beams, straight retractable (SR) and tapered retractable (TR) beams, were designed to lighten the electric car mass. A frontal crash model was established by using the Hypermesh and LS-DYNA to study the frontal structural component crashworthiness of an electric car during collisions at a low-speed of 16 km/h and a high-speed of 50 km/h. The collision energy absorption, the impact force, and the body acceleration, when using new energy-absorbing beams, were analyzed and compared with those when using the original energy-absorbing beam. Simulation results demonstrate that the straight retractable beam can absorb more crash energy by 18.0% at the high-speed collision and reduce the mass by 23.6%, which optimizes both the light mass and the crashworthiness of an electric car.