大学数学
大學數學
대학수학
COLLEGE MATHEMATICS
2012年
6期
51-55
,共5页
粗糙集%决策表%优势关系%下近似约简%辨识矩阵
粗糙集%決策錶%優勢關繫%下近似約簡%辨識矩陣
조조집%결책표%우세관계%하근사약간%변식구진
rough set%decision table%dominance relation%lower approximation reduction%discernibility matrix
研究了优势关系下不协调决策表的下近似约简问题,引入新的下近似约简的定义,证明新的下近似约简与文献[7]定义的下近似约简等价。给出新的下近似约简的判定定理和辨识矩阵,与文献[7]的辨识矩阵相比,计算新的下近似约简的辨识矩阵的时间复杂度要低。因此,可以利用新的辨识矩阵来求决策表的下近似约简.
研究瞭優勢關繫下不協調決策錶的下近似約簡問題,引入新的下近似約簡的定義,證明新的下近似約簡與文獻[7]定義的下近似約簡等價。給齣新的下近似約簡的判定定理和辨識矩陣,與文獻[7]的辨識矩陣相比,計算新的下近似約簡的辨識矩陣的時間複雜度要低。因此,可以利用新的辨識矩陣來求決策錶的下近似約簡.
연구료우세관계하불협조결책표적하근사약간문제,인입신적하근사약간적정의,증명신적하근사약간여문헌[7]정의적하근사약간등개。급출신적하근사약간적판정정리화변식구진,여문헌[7]적변식구진상비,계산신적하근사약간적변식구진적시간복잡도요저。인차,가이이용신적변식구진래구결책표적하근사약간.
The lower approximation reduction in inconsistent decision table based on dominance relations is studied. The new lower approximation reduction is introduced and proved that it is equal to the lower approximation reduction which defined in [7]. The judgment theorem and discernibility matrix with respect to the new lower approximation reduction are established. Compare with the algorithm in [7], the time complexity of the algorithm for finding a discernibility matrix with respect to new lower approximation reduction is lower. So the new discernibility matrix can be used to find the lower approximation reduction.